These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 38267858)

  • 1. InClust+: the deep generative framework with mask modules for multimodal data integration, imputation, and cross-modal generation.
    Wang L; Nie R; Miao X; Cai Y; Wang A; Zhang H; Zhang J; Cai J
    BMC Bioinformatics; 2024 Jan; 25(1):41. PubMed ID: 38267858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep generative framework with embedded vector arithmetic and classifier for sample generation, label transfer, and clustering of single-cell data.
    Wang L; Nie R; Zhang Z; Gu W; Wang S; Wang A; Zhang J; Cai J
    Cell Rep Methods; 2023 Aug; 3(8):100558. PubMed ID: 37671019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-use deep learning method for CITE-seq and single-cell RNA-seq data integration with cell surface protein prediction and imputation.
    Lakkis J; Schroeder A; Su K; Lee MYY; Bashore AC; Reilly MP; Li M
    Nat Mach Intell; 2022 Nov; 4(11):940-952. PubMed ID: 36873621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scGGAN: single-cell RNA-seq imputation by graph-based generative adversarial network.
    Huang Z; Wang J; Lu X; Mohd Zain A; Yu G
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36733262
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ensemble learning models that predict surface protein abundance from single-cell multimodal omics data.
    Xu F; Wang S; Dai X; Mundra PA; Zheng J
    Methods; 2021 May; 189():65-73. PubMed ID: 33039573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Robust probabilistic modeling for single-cell multimodal mosaic integration and imputation via scVAEIT.
    Du JH; Cai Z; Roeder K
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2214414119. PubMed ID: 36459654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comprehensive Integration of Single-Cell Data.
    Stuart T; Butler A; Hoffman P; Hafemeister C; Papalexi E; Mauck WM; Hao Y; Stoeckius M; Smibert P; Satija R
    Cell; 2019 Jun; 177(7):1888-1902.e21. PubMed ID: 31178118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell multi-omics integration for unpaired data by a siamese network with graph-based contrastive loss.
    Liu C; Wang L; Liu Z
    BMC Bioinformatics; 2023 Jan; 24(1):5. PubMed ID: 36600199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint variational autoencoders for multimodal imputation and embedding.
    Kalafut NC; Huang X; Wang D
    Nat Mach Intell; 2023 Jun; 5(6):631-642. PubMed ID: 39175596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collaborative Structure-Preserved Missing Data Imputation for Single-Cell RNA-Seq Clustering.
    Gao H; Shen W; Li R; Liu C; Wu S
    IEEE/ACM Trans Comput Biol Bioinform; 2024; 21(5):1480-1491. PubMed ID: 38776196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scMultiGAN: cell-specific imputation for single-cell transcriptomes with multiple deep generative adversarial networks.
    Wang T; Zhao H; Xu Y; Wang Y; Shang X; Peng J; Xiao B
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37903416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CrossMP: Enabling Cross-Modality Translation between Single-Cell RNA-Seq and Single-Cell ATAC-Seq through Web-Based Portal.
    Lyu Z; Dahal S; Zeng S; Wang J; Xu D; Joshi T
    Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SECANT: a biology-guided semi-supervised method for clustering, classification, and annotation of single-cell multi-omics.
    Wang X; Xu Z; Hu H; Zhou X; Zhang Y; Lafyatis R; Chen K; Huang H; Ding Y; Duerr RH; Chen W
    PNAS Nexus; 2022 Sep; 1(4):pgac165. PubMed ID: 36157595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multimodal deep learning approaches for single-cell multi-omics data integration.
    Athaya T; Ripan RC; Li X; Hu H
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37651607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel f-divergence based generative adversarial imputation method for scRNA-seq data analysis.
    Si T; Hopkins Z; Yanev J; Hou J; Gong H
    PLoS One; 2023; 18(11):e0292792. PubMed ID: 37948433
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Learning deep features and topological structure of cells for clustering of scRNA-sequencing data.
    Wang H; Ma X
    Brief Bioinform; 2022 May; 23(3):. PubMed ID: 35302164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A deep generative model for multi-view profiling of single-cell RNA-seq and ATAC-seq data.
    Li G; Fu S; Wang S; Zhu C; Duan B; Tang C; Chen X; Chuai G; Wang P; Liu Q
    Genome Biol; 2022 Jan; 23(1):20. PubMed ID: 35022082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data.
    Zou G; Lin Y; Han T; Ou-Yang L
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 36047285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of scATAC-Seq with scRNA-Seq Data.
    Berest I; Tangherloni A
    Methods Mol Biol; 2023; 2584():293-310. PubMed ID: 36495457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scIGANs: single-cell RNA-seq imputation using generative adversarial networks.
    Xu Y; Zhang Z; You L; Liu J; Fan Z; Zhou X
    Nucleic Acids Res; 2020 Sep; 48(15):e85. PubMed ID: 32588900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.