These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38268420)

  • 1. Design of MoS
    Dong C; Lai Z; Wang H
    Phys Chem Chem Phys; 2024 Feb; 26(6):5303-5310. PubMed ID: 38268420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the catalytic performance of single platinum anchored on graphene by vacancy engineering for propane dehydrogenation: a theoretical study.
    Zhai Z; Zhang B; Wang L; Zhang X; Liu G
    Phys Chem Chem Phys; 2021 Oct; 23(38):22004-22013. PubMed ID: 34569572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
    Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Single-Atom Platinum for Selective and Stable Catalysts in Propane Dehydrogenation.
    Nakaya Y; Furukawa S
    Chempluschem; 2022 Feb; 87(4):e202100560. PubMed ID: 35194957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation.
    Nakaya Y; Hirayama J; Yamazoe S; Shimizu KI; Furukawa S
    Nat Commun; 2020 Jun; 11(1):2838. PubMed ID: 32503995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation.
    Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST
    ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Active and Regenerable Nanometric High-Entropy Catalyst for Efficient Propane Dehydrogenation.
    Zhou SZ; Li WC; He B; Xie YD; Wang H; Liu X; Chen L; Wei J; Lu AH
    Angew Chem Int Ed Engl; 2024 Oct; 63(43):e202410835. PubMed ID: 39044707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doubly Decorated Platinum-Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation.
    Nakaya Y; Xing F; Ham H; Shimizu KI; Furukawa S
    Angew Chem Int Ed Engl; 2021 Sep; 60(36):19715-19719. PubMed ID: 34185941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Propane Dehydrogenation on Pt
    Liu Y; Bhowmick A; Liu D; Caratzoulas S; Vlachos DG
    Angew Chem Int Ed Engl; 2024 Sep; ():e202414578. PubMed ID: 39283725
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Force Field Development for Propane Dehydrogenation on Platinum Surfaces.
    Salom-Català A; Strugovshchikov E; Kaźmierczak K; Curulla-Ferré D; Ricart JM; Carbó JJ
    J Phys Chem C Nanomater Interfaces; 2024 Feb; 128(7):2844-2855. PubMed ID: 38414834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transition-metal single atoms embedded into defective BC
    Zhou Y; Gao G; Chu W; Wang LW
    Nanoscale; 2021 Jan; 13(2):1331-1339. PubMed ID: 33410443
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-atom catalysts for CO
    Back S; Lim J; Kim NY; Kim YH; Jung Y
    Chem Sci; 2017 Feb; 8(2):1090-1096. PubMed ID: 28451248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing catalytic activity of Cr
    Jan F; Zhi S; Sun X; Li B
    Phys Chem Chem Phys; 2024 Mar; 26(12):9708-9721. PubMed ID: 38470365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced design and development of catalysts in propane dehydrogenation.
    Yang F; Zhang J; Shi Z; Chen J; Wang G; He J; Zhao J; Zhuo R; Wang R
    Nanoscale; 2022 Jul; 14(28):9963-9988. PubMed ID: 35815671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ethane and Propane Dehydrogenation on Small Platinum Clusters Supported on Silica: An Ab Initio Molecular Dynamics and DFT Study.
    Kumar P; Srivastava VC
    Chempluschem; 2024 Feb; 89(2):e202300347. PubMed ID: 37937860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Theoretical screening of single-atom catalysts (SACs) on Mo
    Komen P; Suthirakun S; Plucksacholatarn A; Kuboon S; Faungnawakij K; Junkaew A
    J Colloid Interface Sci; 2025 Feb; 679(Pt A):1026-1035. PubMed ID: 39418890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A DFT screening of single transition atoms supported on MoS
    Zhai X; Li L; Liu X; Li Y; Yang J; Yang D; Zhang J; Yan H; Ge G
    Nanoscale; 2020 May; 12(18):10035-10043. PubMed ID: 32319506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of transition metal single-atom catalysts supported by a WS
    Li R; Guo W
    Phys Chem Chem Phys; 2022 Jun; 24(21):13384-13398. PubMed ID: 35608279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CO oxidation over the polyoxometalate-supported single-atom catalysts M
    Liu CG; Zhang LL; Chen XM
    Dalton Trans; 2019 May; 48(18):6228-6235. PubMed ID: 30984930
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical ammonia synthesis under ambient conditions using TM-embedded porphine-fused sheets as single-atom catalysts.
    Yao Y; Lv SY; Li G; Yang LM
    Phys Chem Chem Phys; 2023 Oct; 25(40):27131-27141. PubMed ID: 37721478
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.