These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38269043)

  • 1. The Relevance of the Interfacial Water Reactivity for Electrochemical CO Reduction on Copper Single Crystals.
    Winkler D; Leitner M; Auer A; Kunze-Liebhäuser J
    ACS Catal; 2024 Jan; 14(2):1098-1106. PubMed ID: 38269043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface Water as an Initial Proton Source for the Electrochemical CO Reduction Reaction on Copper Surfaces.
    Shao F; Xia Z; You F; Wong JK; Low QH; Xiao H; Yeo BS
    Angew Chem Int Ed Engl; 2023 Jan; 62(3):e202214210. PubMed ID: 36369647
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H-Induced Restructuring on Cu(111) Triggers CO Electroreduction in an Acidic Electrolyte.
    Cheng D; Alexandrova AN; Sautet P
    J Phys Chem Lett; 2024 Feb; 15(4):1056-1061. PubMed ID: 38254259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spontaneous Reconstruction of Copper Active Sites during the Alkaline CORR: Degradation and Recovery of the Performance.
    Liu Q; Jiang Q; Li L; Yang W
    J Am Chem Soc; 2024 Feb; 146(6):4242-4251. PubMed ID: 38300828
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Size-Dependent Activity and Selectivity of Atomic-Level Copper Nanoclusters during CO/CO
    Rong W; Zou H; Zang W; Xi S; Wei S; Long B; Hu J; Ji Y; Duan L
    Angew Chem Int Ed Engl; 2021 Jan; 60(1):466-472. PubMed ID: 32946193
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In situ spectroelectrochemical probing of CO redox landscape on copper single-crystal surfaces.
    Shao F; Wong JK; Low QH; Iannuzzi M; Li J; Lan J
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2118166119. PubMed ID: 35858341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacial Water Structure as a Descriptor for Its Electro-Reduction on Ni(OH)
    Auer A; Sarabia FJ; Winkler D; Griesser C; Climent V; Feliu JM; Kunze-Liebhäuser J
    ACS Catal; 2021 Aug; 11(16):10324-10332. PubMed ID: 34476113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selectivity Map for the Late Stages of CO and CO
    Piqué O; Low QH; Handoko AD; Yeo BS; Calle-Vallejo F
    Angew Chem Int Ed Engl; 2021 May; 60(19):10784-10790. PubMed ID: 33527641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Approaches for CO
    Overa S; Ko BH; Zhao Y; Jiao F
    Acc Chem Res; 2022 Mar; 55(5):638-648. PubMed ID: 35041403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Promotion of CO
    Wu M; Zhu C; Wang K; Li G; Dong X; Song Y; Xue J; Chen W; Wei W; Sun Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11562-11569. PubMed ID: 32073815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Favoring CO Intermediate Stabilization and Protonation by Crown Ether for CO
    Xu K; Li J; Liu F; Chen X; Zhao T; Cheng F
    Angew Chem Int Ed Engl; 2023 Dec; 62(50):e202311968. PubMed ID: 37885357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. C-C Coupling Is Unlikely to Be the Rate-Determining Step in the Formation of C
    Chang X; Li J; Xiong H; Zhang H; Xu Y; Xiao H; Lu Q; Xu B
    Angew Chem Int Ed Engl; 2022 Jan; 61(2):e202111167. PubMed ID: 34779566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocatalyst Derived from Waste Cu-Sn Bronze for CO
    Stojkovikj S; El-Nagar GA; Firschke F; Pardo Pérez LC; Choubrac L; Najdoski M; Mayer MT
    ACS Appl Mater Interfaces; 2021 Aug; 13(32):38161-38169. PubMed ID: 34370955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intercepting Elusive Intermediates in Cu-Mediated CO Electrochemical Reduction with Alkyl Species.
    Li J; Li C; Hou J; Gao W; Chang X; Lu Q; Xu B
    J Am Chem Soc; 2022 Nov; 144(44):20495-20506. PubMed ID: 36286405
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular-Scale Insights into Electrochemical Reduction of CO
    Mu S; Li L; Zhao R; Lu H; Dong H; Cui C
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47619-47628. PubMed ID: 34582170
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Insights into the Unique Role of Copper in CO
    Liu SP; Zhao M; Gao W; Jiang Q
    ChemSusChem; 2017 Jan; 10(2):387-393. PubMed ID: 27943655
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical interfacial influences on deoxygenation and hydrogenation reactions in CO reduction on a Cu(100) surface.
    Sheng T; Lin WF; Sun SG
    Phys Chem Chem Phys; 2016 Jun; 18(22):15304-11. PubMed ID: 27211005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Doping of Cr to Regulate the Valence State of Cu and Co Contributes to Efficient Water Splitting.
    Mu X; Wang K; Lv K; Feng B; Yu X; Li L; Zhang X; Yang X; Lu Z
    ACS Appl Mater Interfaces; 2023 Apr; 15(13):16552-16561. PubMed ID: 36960922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemical CO
    Xiao X; Xu Y; Lv X; Xie J; Liu J; Yu C
    J Colloid Interface Sci; 2019 Jun; 545():1-7. PubMed ID: 30861477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomically Dispersed Ni-Cu Catalysts for pH-Universal CO
    Zhang L; Feng J; Liu S; Tan X; Wu L; Jia S; Xu L; Ma X; Song X; Ma J; Sun X; Han B
    Adv Mater; 2023 Mar; 35(13):e2209590. PubMed ID: 36626852
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.