These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 38269393)
1. Evaluation of Malathion, DIMP, and Strawberry Furanone as CWA Simulants for Consideration in Field-Level Interior Building Remediation Exercises. Oudejans L; Wyrzykowska-Ceradini B; Morris E; Jackson S; Touati A; Sawyer J; Mikelonis A; Serre S J Chem Health Saf; 2023 Jun; 30():270-278. PubMed ID: 38269393 [TBL] [Abstract][Full Text] [Related]
2. Chemical warfare agent simulants for human volunteer trials of emergency decontamination: A systematic review. James T; Wyke S; Marczylo T; Collins S; Gaulton T; Foxall K; Amlôt R; Duarte-Davidson R J Appl Toxicol; 2018 Jan; 38(1):113-121. PubMed ID: 28990191 [TBL] [Abstract][Full Text] [Related]
3. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine. Gephart RT; Coneski PN; Wynne JH ACS Appl Mater Interfaces; 2013 Oct; 5(20):10191-200. PubMed ID: 24060426 [TBL] [Abstract][Full Text] [Related]
4. Insects as Chemical Sensors: Detection of Chemical Warfare Agent Simulants and Hydrolysis Products in the Blow Fly Using LC-MS/MS. Dowling SN; Skaggs CL; Owings CG; Moctar K; Picard CJ; Manicke NE Environ Sci Technol; 2022 Mar; 56(6):3535-3543. PubMed ID: 35188758 [TBL] [Abstract][Full Text] [Related]
5. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer. Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233 [TBL] [Abstract][Full Text] [Related]
6. Using cheminformatics to find simulants for chemical warfare agents. Lavoie J; Srinivasan S; Nagarajan R J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989 [TBL] [Abstract][Full Text] [Related]
7. GC-MS/MS quantification of benzyl salicylate on skin and hair: A novel chemical simulant for human decontamination studies. James T; Collins S; Amlôt R; Marczylo T J Chromatogr B Analyt Technol Biomed Life Sci; 2019 Oct; 1129():121818. PubMed ID: 31670058 [TBL] [Abstract][Full Text] [Related]
8. Environmental Decontamination of a Chemical Warfare Simulant Utilizing a Membrane Vesicle-Encapsulated Phosphotriesterase. Alves NJ; Moore M; Johnson BJ; Dean SN; Turner KB; Medintz IL; Walper SA ACS Appl Mater Interfaces; 2018 May; 10(18):15712-15719. PubMed ID: 29672020 [TBL] [Abstract][Full Text] [Related]
9. Boosted ability of ZIF-8 for early-stage adsorption and degradation of chemical warfare agent simulants. Oh S; Lee S; Lee G; Oh M Nanoscale Adv; 2023 Nov; 5(23):6449-6457. PubMed ID: 38024321 [TBL] [Abstract][Full Text] [Related]
10. Force Fields for Molecular Modeling of Sarin and its Simulants: DMMP and DIMP. Emelianova A; Basharova EA; Kolesnikov AL; Arribas EV; Ivanova EV; Gor GY J Phys Chem B; 2021 Apr; 125(16):4086-4098. PubMed ID: 33872511 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of water-only or soap and water skin decontamination of chemical warfare agents or simulants using in vitro human models: A systematic review. Chiang C; Kashetsky N; Feschuk A; Burli A; Law RM; Maibach HI J Appl Toxicol; 2022 Jun; 42(6):930-941. PubMed ID: 34665468 [TBL] [Abstract][Full Text] [Related]
12. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants. Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465 [TBL] [Abstract][Full Text] [Related]
13. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants. Cao Y; Elmahdy A; Zhu H; Hui X; Maibach H J Appl Toxicol; 2018 May; 38(5):724-733. PubMed ID: 29315700 [TBL] [Abstract][Full Text] [Related]
14. Identification of Novel Simulants for Toxic Industrial Chemicals and Chemical Warfare Agents for Human Decontamination Studies: A Systematic Review and Categorisation of Physicochemical Characteristics. James T; Collins S; Marczylo T Int J Environ Res Public Health; 2021 Aug; 18(16):. PubMed ID: 34444429 [TBL] [Abstract][Full Text] [Related]
15. Metal-Organic Framework- and Polyoxometalate-Based Sorbents for the Uptake and Destruction of Chemical Warfare Agents. Grissom TG; Plonka AM; Sharp CH; Ebrahim AM; Tian Y; Collins-Wildman DL; Kaledin AL; Siegal HJ; Troya D; Hill CL; Frenkel AI; Musaev DG; Gordon WO; Karwacki CJ; Mitchell MB; Morris JR ACS Appl Mater Interfaces; 2020 Apr; 12(13):14641-14661. PubMed ID: 31994872 [TBL] [Abstract][Full Text] [Related]
16. Closer Look at Adsorption of Sarin and Simulants on Metal-Organic Frameworks. Emelianova A; Reed A; Basharova EA; Kolesnikov AL; Gor GY ACS Appl Mater Interfaces; 2023 Apr; 15(14):18559-18567. PubMed ID: 36976256 [TBL] [Abstract][Full Text] [Related]
17. Insight into organophosphate chemical warfare agent simulant hydrolysis in metal-organic frameworks. Ploskonka AM; DeCoste JB J Hazard Mater; 2019 Aug; 375():191-197. PubMed ID: 31059988 [TBL] [Abstract][Full Text] [Related]
18. Studies on residue-free decontaminants for chemical warfare agents. Wagner GW Environ Sci Technol; 2015 Mar; 49(6):3755-60. PubMed ID: 25710477 [TBL] [Abstract][Full Text] [Related]
19. Fate of the chemical warfare agent O-ethyl S-2-diisopropylaminoethyl methylphosphonothiolate (VX) on soil following accelerant-based fire and liquid decontamination. Gravett MR; Hopkins FB; Self AJ; Webb AJ; Timperley CM; Riches JR Anal Bioanal Chem; 2014 Aug; 406(21):5121-35. PubMed ID: 24972874 [TBL] [Abstract][Full Text] [Related]