These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 38269426)

  • 1. Extreme Metastability of Diamond and its Transformation to the BC8 Post-Diamond Phase of Carbon.
    Nguyen-Cong K; Willman JT; Gonzalez JM; Williams AS; Belonoshko AB; Moore SG; Thompson AP; Wood MA; Eggert JH; Millot M; Zepeda-Ruiz LA; Oleynik II
    J Phys Chem Lett; 2024 Feb; 15(4):1152-1160. PubMed ID: 38269426
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double-Shock Compression Pathways from Diamond to BC8 Carbon.
    Shi J; Liang Z; Wang J; Pan S; Ding C; Wang Y; Wang HT; Xing D; Sun J
    Phys Rev Lett; 2023 Oct; 131(14):146101. PubMed ID: 37862650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon under extreme conditions: phase boundaries and electronic properties from first-principles theory.
    Correa AA; Bonev SA; Galli G
    Proc Natl Acad Sci U S A; 2006 Jan; 103(5):1204-8. PubMed ID: 16432191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural transformations in carbon under extreme pressure: beyond diamond.
    Sun J; Klug DD; Martonák R
    J Chem Phys; 2009 May; 130(19):194512. PubMed ID: 19466848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis of Novel Phases in Si Nanowires Using Diamond Anvil Cells at High Pressures and Temperatures.
    Huston LQ; Lugstein A; Shen G; Cullen DA; Haberl B; Williams JS; Bradby JE
    Nano Lett; 2021 Feb; 21(3):1427-1433. PubMed ID: 33502867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamics of diamond nucleation on the nanoscale.
    Wang CX; Yang YH; Xu NS; Yang GW
    J Am Chem Soc; 2004 Sep; 126(36):11303-6. PubMed ID: 15355112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ observation of quasimelting of diamond and reversible graphite-diamond phase transformations.
    Huang JY
    Nano Lett; 2007 Aug; 7(8):2335-40. PubMed ID: 17628113
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth of diamond in liquid metal at 1 atm pressure.
    Gong Y; Luo D; Choe M; Kim Y; Ram B; Zafari M; Seong WK; Bakharev P; Wang M; Park IK; Lee S; Shin TJ; Lee Z; Lee G; Ruoff RS
    Nature; 2024 May; 629(8011):348-354. PubMed ID: 38658760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transformation of diamond to fullerene-type onions at pressure 70 GPa and temperature 2400 K.
    Popov MY; Churkin VD; Kulnitskiy BA; Kirichenko AN; Bulatov KM; Bykov AA; Zinin PV; Blank V
    Nanotechnology; 2020 Jul; 31(31):315602. PubMed ID: 32315987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon phase diagram from ab initio molecular dynamics.
    Wang X; Scandolo S; Car R
    Phys Rev Lett; 2005 Oct; 95(18):185701. PubMed ID: 16383918
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Machine learning the metastable phase diagram of covalently bonded carbon.
    Srinivasan S; Batra R; Luo D; Loeffler T; Manna S; Chan H; Yang L; Yang W; Wen J; Darancet P; K R S Sankaranarayanan S
    Nat Commun; 2022 Jun; 13(1):3251. PubMed ID: 35668085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Organization of Amorphous Carbon Nanocapsules into Diamond Nanocrystals Driven by Self-Nanoscopic Excessive Pressure under Moderate Electron Irradiation without External Heating.
    Wang C; Ling S; Yang J; Rao D; Guo Z
    Small; 2018 Jan; 14(1):. PubMed ID: 29131499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Structure Properties of Carbon Materials Formed in 2,4,6-Triamino-1,3,5-Trinitrobenzene Detonation: A Theoretical Insight for Nucleation of Diamond-like Carbon.
    He ZH; Huang YY; Ji GF; Chen J; Wu Q
    Int J Mol Sci; 2023 Aug; 24(16):. PubMed ID: 37628750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nucleation mechanism for the direct graphite-to-diamond phase transition.
    Khaliullin RZ; Eshet H; Kühne TD; Behler J; Parrinello M
    Nat Mater; 2011 Jul; 10(9):693-7. PubMed ID: 21785417
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth Mechanism and Kinetics of Diamond in Liquid Gallium from Quantum Mechanics Molecular Dynamics Simulations.
    Shen Y; Morozov SI; Camacho-Mojica DC; Ruoff RS; An Q; Goddard WA
    ACS Appl Mater Interfaces; 2023 Jul; 15(27):33046-33055. PubMed ID: 37368946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of molecular CO
    Kim M; Ryu YJ; Lim J; Yoo CS
    J Phys Condens Matter; 2018 Aug; 30(31):314002. PubMed ID: 29957600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reversible nanodiamond-carbon onion phase transformations.
    Xiao J; Ouyang G; Liu P; Wang CX; Yang GW
    Nano Lett; 2014 Jun; 14(6):3645-52. PubMed ID: 24823241
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Free energy model for solid high-pressure phases of carbon.
    Schöttler M; French M; Cebulla D; Redmer R
    J Phys Condens Matter; 2016 Apr; 28(14):145401. PubMed ID: 26974530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic boundaries and phase transformations of ice i at high pressure.
    Wang Y; Zhang H; Yang X; Jiang S; Goncharov AF
    J Chem Phys; 2018 Jan; 148(4):044508. PubMed ID: 29390815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local structure of liquid carbon controls diamond nucleation.
    Ghiringhelli LM; Valeriani C; Meijer EJ; Frenkel D
    Phys Rev Lett; 2007 Aug; 99(5):055702. PubMed ID: 17930770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.