These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38269597)

  • 1. O-O bond formation
    Li G; Ahlquist MSG
    Dalton Trans; 2024 Feb; 53(6):2456-2459. PubMed ID: 38269597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioinspired Nonheme Iron Catalysts for C-H and C═C Bond Oxidation: Insights into the Nature of the Metal-Based Oxidants.
    Oloo WN; Que L
    Acc Chem Res; 2015 Sep; 48(9):2612-21. PubMed ID: 26280131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Iron-Catalyzed Water Oxidation: O-O Bond Formation via Intramolecular Oxo-Oxo Interaction.
    Zhang HT; Su XJ; Xie F; Liao RZ; Zhang MT
    Angew Chem Int Ed Engl; 2021 May; 60(22):12467-12474. PubMed ID: 33769654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stereospecific alkane hydroxylation by non-heme iron catalysts: mechanistic evidence for an Fe(V)=O active species.
    Chen K; Que L
    J Am Chem Soc; 2001 Jul; 123(26):6327-37. PubMed ID: 11427057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Precisely constructing orbital coupling-modulated iron dinuclear site for enhanced catalytic ozonation performance.
    Qu W; Tang Z; Tang S; Zhong T; Zhao H; Tian S; Shu D; He C
    Proc Natl Acad Sci U S A; 2024 Apr; 121(16):e2319119121. PubMed ID: 38588435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unraveling the mechanism of water oxidation catalyzed by nonheme iron complexes.
    Acuña-Parés F; Codolà Z; Costas M; Luis JM; Lloret-Fillol J
    Chemistry; 2014 May; 20(19):5696-707. PubMed ID: 24668499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the High Catalytic Activity of a Dinuclear Iron Complex for the Oxygen Evolution Reaction.
    Hu S; Xu P; Xu RX; Zheng X
    Inorg Chem; 2021 May; 60(10):7297-7305. PubMed ID: 33914515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metalloporphyrins as Catalytic Models for Studying Hydrogen and Oxygen Evolution and Oxygen Reduction Reactions.
    Li X; Lei H; Xie L; Wang N; Zhang W; Cao R
    Acc Chem Res; 2022 Mar; 55(6):878-892. PubMed ID: 35192330
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How low does iron go? Chasing the active species in fe-catalyzed cross-coupling reactions.
    Bedford RB
    Acc Chem Res; 2015 May; 48(5):1485-93. PubMed ID: 25916260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity?
    Ansari M; Rajaraman G
    Dalton Trans; 2023 Jan; 52(2):308-325. PubMed ID: 36504243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Olefin cis-dihydroxylation with bio-inspired iron catalysts. evidence for an Fe(II)/Fe(IV) catalytic cycle.
    Oldenburg PD; Feng Y; Pryjomska-Ray I; Ness D; Que L
    J Am Chem Soc; 2010 Dec; 132(50):17713-23. PubMed ID: 21105649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterobimetallic NiFe Cooperative Molecular Water Oxidation Catalyst.
    Zhang HT; Guo YH; Xiao Y; Du HY; Zhang MT
    Angew Chem Int Ed Engl; 2023 Apr; 62(18):e202218859. PubMed ID: 36869660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atroposelective Synthesis of C-C Axially Chiral Compounds via Mono- and Dinuclear Vanadium Catalysis.
    Kumar A; Sasai H; Takizawa S
    Acc Chem Res; 2022 Oct; 55(20):2949-2965. PubMed ID: 36206455
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pivotal Role of Geometry Regulation on O-O Bond Formation Mechanism of Bimetallic Water Oxidation Catalysts.
    Chen QF; Xian KL; Zhang HT; Su XJ; Liao RZ; Zhang MT
    Angew Chem Int Ed Engl; 2024 Feb; 63(9):e202317514. PubMed ID: 38179807
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical study of the water oxidation mechanism with non-heme Fe(Pytacn) iron complexes. Evidence that the Fe(IV)(O)(Pytacn) species cannot react with the water molecule to form the O-O bond.
    Acuña-Parés F; Costas M; Luis JM; Lloret-Fillol J
    Inorg Chem; 2014 Jun; 53(11):5474-85. PubMed ID: 24816178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular and electronic structures of dinuclear iron complexes incorporating strongly electron-donating ligands: implications for the generation of the one- and two-electron oxidized forms.
    Strautmann JB; Freiherr von Richthofen CG; Heinze-Brückner G; DeBeer S; Bothe E; Bill E; Weyhermüller T; Stammler A; Bögge H; Glaser T
    Inorg Chem; 2011 Jan; 50(1):155-71. PubMed ID: 21114259
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic simulation studies on the transient formation of the oxo-iron(IV) porphyrin radical cation during the reaction of iron(III) tetrakis-5,10,15,20-(N-methyl-4-pyridyl)-porphyrin with hydrogen peroxide in aqueous solution.
    Saha TK; Karmaker S; Tamagake K
    Luminescence; 2003; 18(5):259-67. PubMed ID: 14587077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of water oxidation by non-heme iron catalysts when driven with sodium periodate.
    Parent AR; Nakazono T; Lin S; Utsunomiya S; Sakai K
    Dalton Trans; 2014 Sep; 43(33):12501-13. PubMed ID: 25001558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism for O-O Bond Formation via Radical Coupling of Metal and Ligand Based Radicals: A New Pathway.
    Pushkar Y; Pineda-Galvan Y; Ravari AK; Otroshchenko T; Hartzler DA
    J Am Chem Soc; 2018 Oct; 140(42):13538-13541. PubMed ID: 30296067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic applications of nonmetal catalysts for homogeneous oxidations.
    Adam W; Saha-Möller CR; Ganeshpure PA
    Chem Rev; 2001 Nov; 101(11):3499-548. PubMed ID: 11840992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.