These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38269874)

  • 1. Using Natural Language Processing to Predict Risk in Electronic Health Records.
    Van Le D; Montgomery J; Kirkby K; Scanlan J
    Stud Health Technol Inform; 2024 Jan; 310():574-578. PubMed ID: 38269874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a semantic lexicon for clinical natural language processing.
    Liu H; Wu ST; Li D; Jonnalagadda S; Sohn S; Wagholikar K; Haug PJ; Huff SM; Chute CG
    AMIA Annu Symp Proc; 2012; 2012():568-76. PubMed ID: 23304329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study of Social and Behavioral Determinants of Health in Lung Cancer Patients Using Transformers-based Natural Language Processing Models.
    Yu Z; Yang X; Dang C; Wu S; Adekkanattu P; Pathak J; George TJ; Hogan WR; Guo Y; Bian J; Wu Y
    AMIA Annu Symp Proc; 2021; 2021():1225-1233. PubMed ID: 35309014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using natural language processing to analyze unstructured patient-reported outcomes data derived from electronic health records for cancer populations: a systematic review.
    Sim JA; Huang X; Horan MR; Baker JN; Huang IC
    Expert Rev Pharmacoecon Outcomes Res; 2024 Apr; 24(4):467-475. PubMed ID: 38383308
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.
    Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K
    Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Text mining occupations from the mental health electronic health record: a natural language processing approach using records from the Clinical Record Interactive Search (CRIS) platform in south London, UK.
    Chilman N; Song X; Roberts A; Tolani E; Stewart R; Chui Z; Birnie K; Harber-Aschan L; Gazard B; Chandran D; Sanyal J; Hatch S; Kolliakou A; Das-Munshi J
    BMJ Open; 2021 Mar; 11(3):e042274. PubMed ID: 33766838
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project.
    Jackson RG; Patel R; Jayatilleke N; Kolliakou A; Ball M; Gorrell G; Roberts A; Dobson RJ; Stewart R
    BMJ Open; 2017 Jan; 7(1):e012012. PubMed ID: 28096249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancing post-traumatic stress disorder patient assessment: leveraging natural language processing for research of domain criteria identification using electronic medical records.
    Miranda O; Kiehl SM; Qi X; Brannock MD; Kosten T; Ryan ND; Kirisci L; Wang Y; Wang L
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):154. PubMed ID: 38835009
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Five-Step Workflow to Manually Annotate Unstructured Data into Training Dataset for Natural Language Processing.
    Zhu Y; Song T; Zhang Z; Yin M; Yu P
    Stud Health Technol Inform; 2024 Jan; 310():109-113. PubMed ID: 38269775
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of Natural Language Processing Tools to Identify and Classify Periprosthetic Femur Fractures.
    Tibbo ME; Wyles CC; Fu S; Sohn S; Lewallen DG; Berry DJ; Maradit Kremers H
    J Arthroplasty; 2019 Oct; 34(10):2216-2219. PubMed ID: 31416741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Corpus Annotated With Mentions of Pain in Mental Health Records: Natural Language Processing Approach.
    Chaturvedi J; Chance N; Mirza L; Vernugopan V; Velupillai S; Stewart R; Roberts A
    JMIR Form Res; 2023 Jun; 7():e45849. PubMed ID: 37358897
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.