BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38269874)

  • 1. Using Natural Language Processing to Predict Risk in Electronic Health Records.
    Van Le D; Montgomery J; Kirkby K; Scanlan J
    Stud Health Technol Inform; 2024 Jan; 310():574-578. PubMed ID: 38269874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Risk prediction using natural language processing of electronic mental health records in an inpatient forensic psychiatry setting.
    Le DV; Montgomery J; Kirkby KC; Scanlan J
    J Biomed Inform; 2018 Oct; 86():49-58. PubMed ID: 30118855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review.
    Koleck TA; Dreisbach C; Bourne PE; Bakken S
    J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives.
    Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME
    J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Natural Language Processing of Electronic Health Records to Measure Goals-of-Care Discussions as a Clinical Trial Outcome.
    Lee RY; Kross EK; Torrence J; Li KS; Sibley J; Cohen T; Lober WB; Engelberg RA; Curtis JR
    JAMA Netw Open; 2023 Mar; 6(3):e231204. PubMed ID: 36862411
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine learning and natural language processing (NLP) approach to predict early progression to first-line treatment in real-world hormone receptor-positive (HR+)/HER2-negative advanced breast cancer patients.
    Ribelles N; Jerez JM; Rodriguez-Brazzarola P; Jimenez B; Diaz-Redondo T; Mesa H; Marquez A; Sanchez-Muñoz A; Pajares B; Carabantes F; Bermejo MJ; Villar E; Dominguez-Recio ME; Saez E; Galvez L; Godoy A; Franco L; Ruiz-Medina S; Lopez I; Alba E
    Eur J Cancer; 2021 Feb; 144():224-231. PubMed ID: 33373867
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of Natural Language Processing of Clinical Notes With a Validated Risk-Stratification Tool to Predict Severe Maternal Morbidity.
    Clapp MA; Kim E; James KE; Perlis RH; Kaimal AJ; McCoy TH; Easter SR
    JAMA Netw Open; 2022 Oct; 5(10):e2234924. PubMed ID: 36197662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a semantic lexicon for clinical natural language processing.
    Liu H; Wu ST; Li D; Jonnalagadda S; Sohn S; Wagholikar K; Haug PJ; Huff SM; Chute CG
    AMIA Annu Symp Proc; 2012; 2012():568-76. PubMed ID: 23304329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Study of Social and Behavioral Determinants of Health in Lung Cancer Patients Using Transformers-based Natural Language Processing Models.
    Yu Z; Yang X; Dang C; Wu S; Adekkanattu P; Pathak J; George TJ; Hogan WR; Guo Y; Bian J; Wu Y
    AMIA Annu Symp Proc; 2021; 2021():1225-1233. PubMed ID: 35309014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a natural language processing algorithm to detect chronic cough in electronic health records.
    Bali V; Weaver J; Turzhitsky V; Schelfhout J; Paudel ML; Hulbert E; Peterson-Brandt J; Currie AG; Bakka D
    BMC Pulm Med; 2022 Jun; 22(1):256. PubMed ID: 35764999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review.
    Hossain E; Rana R; Higgins N; Soar J; Barua PD; Pisani AR; Turner K
    Comput Biol Med; 2023 Mar; 155():106649. PubMed ID: 36805219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using natural language processing to analyze unstructured patient-reported outcomes data derived from electronic health records for cancer populations: a systematic review.
    Sim JA; Huang X; Horan MR; Baker JN; Huang IC
    Expert Rev Pharmacoecon Outcomes Res; 2024 Apr; 24(4):467-475. PubMed ID: 38383308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural language processing to extract symptoms of severe mental illness from clinical text: the Clinical Record Interactive Search Comprehensive Data Extraction (CRIS-CODE) project.
    Jackson RG; Patel R; Jayatilleke N; Kolliakou A; Ball M; Gorrell G; Roberts A; Dobson RJ; Stewart R
    BMJ Open; 2017 Jan; 7(1):e012012. PubMed ID: 28096249
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Text mining occupations from the mental health electronic health record: a natural language processing approach using records from the Clinical Record Interactive Search (CRIS) platform in south London, UK.
    Chilman N; Song X; Roberts A; Tolani E; Stewart R; Chui Z; Birnie K; Harber-Aschan L; Gazard B; Chandran D; Sanyal J; Hatch S; Kolliakou A; Das-Munshi J
    BMJ Open; 2021 Mar; 11(3):e042274. PubMed ID: 33766838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Corpus Annotated With Mentions of Pain in Mental Health Records: Natural Language Processing Approach.
    Chaturvedi J; Chance N; Mirza L; Vernugopan V; Velupillai S; Stewart R; Roberts A
    JMIR Form Res; 2023 Jun; 7():e45849. PubMed ID: 37358897
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing post-traumatic stress disorder patient assessment: leveraging natural language processing for research of domain criteria identification using electronic medical records.
    Miranda O; Kiehl SM; Qi X; Brannock MD; Kosten T; Ryan ND; Kirisci L; Wang Y; Wang L
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):154. PubMed ID: 38835009
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Five-Step Workflow to Manually Annotate Unstructured Data into Training Dataset for Natural Language Processing.
    Zhu Y; Song T; Zhang Z; Yin M; Yu P
    Stud Health Technol Inform; 2024 Jan; 310():109-113. PubMed ID: 38269775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Natural language processing with deep learning for medical adverse event detection from free-text medical narratives: A case study of detecting total hip replacement dislocation.
    Borjali A; Magnéli M; Shin D; Malchau H; Muratoglu OK; Varadarajan KM
    Comput Biol Med; 2021 Feb; 129():104140. PubMed ID: 33278631
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of Prediction Models for Critical Care Outcomes Using Natural Language Processing of Electronic Health Record Data.
    Marafino BJ; Park M; Davies JM; Thombley R; Luft HS; Sing DC; Kazi DS; DeJong C; Boscardin WJ; Dean ML; Dudley RA
    JAMA Netw Open; 2018 Dec; 1(8):e185097. PubMed ID: 30646310
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.