These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38270239)

  • 1. Capillary filling dynamics of polymer melts in a bicontinuous nanoporous scaffold.
    Kong W; Neuman A; Zhang AC; Lee D; Riggleman RA; Composto RJ
    J Chem Phys; 2024 Jan; 160(4):. PubMed ID: 38270239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Nanoscale Confinement on Polymer-Infiltrated Scaffold Metal Composites.
    Maguire SM; Bilchak CR; Corsi JS; Welborn SS; Tsaggaris T; Ford J; Detsi E; Fakhraai Z; Composto RJ
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44893-44903. PubMed ID: 34494810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dramatic Increase in Polymer Glass Transition Temperature under Extreme Nanoconfinement in Weakly Interacting Nanoparticle Films.
    Wang H; Hor JL; Zhang Y; Liu T; Lee D; Fakhraai Z
    ACS Nano; 2018 Jun; 12(6):5580-5587. PubMed ID: 29792676
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of polymer-nanoparticle interactions on the viscosity of unentangled polymers under extreme nanoconfinement during capillary rise infiltration.
    Hor JL; Wang H; Fakhraai Z; Lee D
    Soft Matter; 2018 Mar; 14(13):2438-2446. PubMed ID: 29442118
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theory on Capillary Filling of Polymer Melts in Nanopores.
    Yao Y; Butt HJ; Floudas G; Zhou J; Doi M
    Macromol Rapid Commun; 2018 Jul; 39(14):e1800087. PubMed ID: 29687518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increase in the effective viscosity of polyethylene under extreme nanoconfinement.
    Ren T; Hinton ZR; Huang R; Epps TH; Korley L; Gorte RJ; Lee D
    J Chem Phys; 2024 Jan; 160(2):. PubMed ID: 38214386
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Interplay of Polymer Bridging and Entanglement in Toughening Polymer-Infiltrated Nanoparticle Films.
    Qiang Y; Pande SS; Lee D; Turner KT
    ACS Nano; 2022 Apr; 16(4):6372-6381. PubMed ID: 35380037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complex dynamics of capillary imbibition of poly(ethylene oxide) melts in nanoporous alumina.
    Yao Y; Alexandris S; Henrich F; Auernhammer G; Steinhart M; Butt HJ; Floudas G
    J Chem Phys; 2017 May; 146(20):203320. PubMed ID: 28571382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoporous Polymer-Infiltrated Nanoparticle Films with Uniform or Graded Porosity via Undersaturated Capillary Rise Infiltration.
    Hor JL; Jiang Y; Ring DJ; Riggleman RA; Turner KT; Lee D
    ACS Nano; 2017 Mar; 11(3):3229-3236. PubMed ID: 28221754
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant mobility in nanoporous glass films.
    Kim TS; Mackie K; Zhong Q; Peterson M; Konno T; Dauskardt RH
    Nano Lett; 2009 Jun; 9(6):2427-32. PubMed ID: 19445484
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capillary filling of star polymer melts in nanopores.
    Zhang J; Lei J; Feng P; Floudas G; Zhang G; Zhou J
    J Chem Phys; 2024 Feb; 160(5):. PubMed ID: 38341697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular weight dependence of the intrinsic size effect on T
    Askar S; Wei T; Tan AW; Torkelson JM
    J Chem Phys; 2017 May; 146(20):203323. PubMed ID: 28571378
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymer-Infiltrated Nanoparticle Films Using Capillarity-Based Techniques: Toward Multifunctional Coatings and Membranes.
    Venkatesh RB; Manohar N; Qiang Y; Wang H; Tran HH; Kim BQ; Neuman A; Ren T; Fakhraai Z; Riggleman RA; Stebe KJ; Turner K; Lee D
    Annu Rev Chem Biomol Eng; 2021 Jun; 12():411-437. PubMed ID: 34097843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamics of unentangled polymers during capillary rise infiltration into a nanoparticle packing.
    Shavit A; Riggleman RA
    Soft Matter; 2015 Nov; 11(42):8285-95. PubMed ID: 26355281
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the abnormally slow infiltration rate in mesoporous films.
    Berli CL; Mercuri M; Bellino MG
    Phys Chem Chem Phys; 2017 Jan; 19(3):1731-1734. PubMed ID: 28000817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Competitive spreading versus imbibition of polymer liquid drops in nanoporous membranes: scaling behavior with viscosity.
    Haidara H; Lebeau B; Grzelakowski C; Vonna L; Biguenet F; Vidal L
    Langmuir; 2008 Apr; 24(8):4209-14. PubMed ID: 18302434
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchically structured materials from block polymer confinement within bicontinuous microemulsion-derived nanoporous polyethylene.
    Jones BH; Lodge TP
    ACS Nano; 2011 Nov; 5(11):8914-27. PubMed ID: 21992221
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oriented crystallization of PEG induced by confinement in cylindrical nanopores: structural and thermal properties.
    Grefe AK; Kuttich B; Stühn L; Stark R; Stühn B
    Soft Matter; 2019 Apr; 15(15):3149-3159. PubMed ID: 30860542
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polyimide Hybrid Nanocomposites with Controlled Polymer Filling and Polymer-Matrix Interaction.
    Wang C; Kilic KI; Koerner H; Baur JW; Varshney V; Lionti K; Dauskardt RH
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28239-28246. PubMed ID: 35679607
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Confinement effect of chain dynamics in micrometer thick layers of a polymer melt below the critical molecular weight.
    Kausik R; Mattea C; Fatkullin N; Kimmich R
    J Chem Phys; 2006 Mar; 124(11):114903. PubMed ID: 16555917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.