These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 38270260)

  • 21. Modeling of non-reactive solute transport in fractured clayey till during variable flow rate and time.
    Jørgensen PR; Helstrup T; Urup J; Seifert D
    J Contam Hydrol; 2004 Feb; 68(3-4):193-216. PubMed ID: 14734246
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Turbulent transport and mixing in transitional Rayleigh-Taylor unstable flow: A priori assessment of gradient-diffusion and similarity modeling.
    Schilling O; Mueschke NJ
    Phys Rev E; 2017 Dec; 96(6-1):063111. PubMed ID: 29347290
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Indirect estimation of the Convective Lognormal Transfer function model parameters for describing solute transport in unsaturated and undisturbed soil.
    Mohammadi MH; Vanclooster M
    J Contam Hydrol; 2012 May; 132():48-57. PubMed ID: 22445835
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Analysis of solute transport in flow fields influenced by preferential flowpaths at the decimeter scale.
    Zheng C; Gorelick SM
    Ground Water; 2003; 41(2):142-55. PubMed ID: 12656281
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Detailed characterization of solute transport in a heterogeneous field soil.
    Garrido F; Ghodrati M; Campbell CG; Chendorain M
    J Environ Qual; 2001; 30(2):573-83. PubMed ID: 11285919
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of Different Factors on Water Flow and Solute Transport Investigated by Time Domain Reflectometry in Sandy Clay Loam Field Soil.
    Merdun H
    Water Air Soil Pollut; 2012 Sep; 223(8):4905-4923. PubMed ID: 23002311
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale.
    Rolle M; Chiogna G; Hochstetler DL; Kitanidis PK
    J Contam Hydrol; 2013 Oct; 153():51-68. PubMed ID: 23994908
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pore-scale simulation of fluid flow and solute dispersion in three-dimensional porous media.
    Icardi M; Boccardo G; Marchisio DL; Tosco T; Sethi R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):013032. PubMed ID: 25122394
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One-dimensional analytical solution for hydraulic head and numerical solution for solute transport through a horizontal fracture for submarine groundwater discharge.
    He C; Wang T; Zhao Z; Hao Y; Yeh TJ; Zhan H
    J Contam Hydrol; 2017 Nov; 206():1-9. PubMed ID: 28964541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pulsatile albumin transport in large arteries: a numerical simulation study.
    Rappitsch G; Perktold K
    J Biomech Eng; 1996 Nov; 118(4):511-9. PubMed ID: 8950655
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges.
    Simmons CT; Fenstemaker TR; Sharp JM
    J Contam Hydrol; 2001 Nov; 52(1-4):245-75. PubMed ID: 11695743
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Use of the repeated integral transformation method to describe the transport of solute in soil.
    Mwakilama E; Gathungu D; Magagula V
    Heliyon; 2023 Jan; 9(1):e12774. PubMed ID: 36660459
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Role of macropore continuity and tortuosity on solute transport in soils: 1. Effects of initial and boundary conditions.
    Allaire SE; Gupta SC; Nieber J; Moncrief JF
    J Contam Hydrol; 2002 Oct; 58(3-4):299-321. PubMed ID: 12400838
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulation and analysis of solute transport in 2D fracture/pipe networks: the SOLFRAC program.
    Bodin J; Porel G; Delay F; Ubertosi F; Bernard S; de Dreuzy JR
    J Contam Hydrol; 2007 Jan; 89(1-2):1-28. PubMed ID: 16962206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of spatial variations in shear on diffusion at the wall of an arterial branch.
    Friedman MH; Ehrlich LW
    Circ Res; 1975 Oct; 37(4):446-54. PubMed ID: 1182936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Investigation of interactive effects on water flow and solute transport in sandy loam soil using time domain reflectometry.
    Merdun H
    Sensors (Basel); 2012; 12(7):9749-72. PubMed ID: 23012568
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental study of solute dispersion in macroscopic suspension flow.
    Roht YL; Boschan A; Ippolito I; Chertcoff R
    J Contam Hydrol; 2013 Feb; 145():10-6. PubMed ID: 23266561
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An interpretation of potential scale dependence of the effective matrix diffusion coefficient.
    Liu HH; Zhang YQ; Zhou Q; Molz FJ
    J Contam Hydrol; 2007 Feb; 90(1-2):41-57. PubMed ID: 17067718
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Natural micro-scale heterogeneity induced solute and nanoparticle retardation in fractured crystalline rock.
    Huber F; Enzmann F; Wenka A; Bouby M; Dentz M; Schäfer T
    J Contam Hydrol; 2012 May; 133():40-52. PubMed ID: 22484609
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laboratory observations for two-dimensional solute transport in an aquifer-aquitard system.
    Li X; Wen Z; Zhan H; Wu F; Zhu Q
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38664-38678. PubMed ID: 33738739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.