These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38270348)

  • 1. Enhancing Purely Organic Room Temperature Phosphorescence via Supramolecular Self-Assembly.
    Zheng H; Zhang Z; Cai S; An Z; Huang W
    Adv Mater; 2024 May; 36(18):e2311922. PubMed ID: 38270348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Purely Organic Room-Temperature Phosphorescence.
    Ma XK; Liu Y
    Acc Chem Res; 2021 Sep; 54(17):3403-3414. PubMed ID: 34403251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Supramolecular assembly confined purely organic room temperature phosphorescence and its biological imaging.
    Zhou WL; Lin W; Chen Y; Liu Y
    Chem Sci; 2022 Jul; 13(27):7976-7989. PubMed ID: 35919429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving Purely-Organic Room-Temperature Aqueous Phosphorescence via a Two-Component Macromolecular Self-Assembly Strategy.
    Guo W; Wang X; Zhou B; Zhang K
    Chem Asian J; 2020 Nov; 15(21):3469-3474. PubMed ID: 32909394
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Organic Molecular-to-Supramolecular Self-Assembled Room-Temperature Phosphorescent Materials for Biomedical Applications.
    Datta S; Xu J
    ACS Appl Bio Mater; 2023 Nov; 6(11):4572-4585. PubMed ID: 37883786
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visible-Light-Excited Room-Temperature Phosphorescence in Water by Cucurbit[8]uril-Mediated Supramolecular Assembly.
    Wang J; Huang Z; Ma X; Tian H
    Angew Chem Int Ed Engl; 2020 Jun; 59(25):9928-9933. PubMed ID: 31799773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Long-Lived Organic Room-Temperature Phosphorescence from Amorphous Polymer Systems.
    Guo J; Yang C; Zhao Y
    Acc Chem Res; 2022 Apr; 55(8):1160-1170. PubMed ID: 35394748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noncovalent Polymerization-Activated Ultrastrong Near-Infrared Room-Temperature Phosphorescence Energy Transfer Assembly in Aqueous Solution.
    Dai XY; Huo M; Dong X; Hu YY; Liu Y
    Adv Mater; 2022 Sep; 34(38):e2203534. PubMed ID: 35771589
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Room-temperature phosphorescence from organic materials in aqueous media.
    Panda SK; De A; Banerjee S
    Photochem Photobiol; 2024; 100(4):796-829. PubMed ID: 38837372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assembling-Induced Emission: An Efficient Approach for Amorphous Metal-Free Organic Emitting Materials with Room-Temperature Phosphorescence.
    Ma X; Wang J; Tian H
    Acc Chem Res; 2019 Mar; 52(3):738-748. PubMed ID: 30816706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chaperone Mimetic Strategy for Achieving Organic Room-Temperature Phosphorescence based on Confined Supramolecular Assembly.
    Zuo M; Li T; Feng H; Wang K; Zhao Y; Wang L; Hu XY
    Small; 2024 Jan; 20(2):e2306746. PubMed ID: 37658491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of Deep-Red to Near-Infrared Room-Temperature Charge-Transfer Phosphorescence of Crystalline "Pyrene Box" Cages by Coupled Ion/Guest Structural Self-Assembly.
    Feng W; Chen D; Zhao Y; Mu B; Yan H; Barboiu M
    J Am Chem Soc; 2024 Jan; 146(4):2484-2493. PubMed ID: 38229260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two-Photon Excited Near-Infrared Phosphorescence Based on Secondary Supramolecular Confinement.
    Ma XK; Zhou X; Wu J; Shen FF; Liu Y
    Adv Sci (Weinh); 2022 Jun; 9(18):e2201182. PubMed ID: 35466559
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncommon Supramolecular Phosphorescence-Capturing Assembly Based on Cucurbit[8]uril-Mediated Molecular Folding for Near-Infrared Lysosome Imaging.
    Huo M; Dai XY; Liu Y
    Small; 2022 Jan; 18(1):e2104514. PubMed ID: 34741495
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Advances on Host-Guest Material Systems toward Organic Room Temperature Phosphorescence.
    Yan X; Peng H; Xiang Y; Wang J; Yu L; Tao Y; Li H; Huang W; Chen R
    Small; 2022 Jan; 18(1):e2104073. PubMed ID: 34725921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly Reversible Supramolecular Light Switch for NIR Phosphorescence Resonance Energy Transfer.
    Wang C; Ma XK; Guo P; Jiang C; Liu YH; Liu G; Xu X; Liu Y
    Adv Sci (Weinh); 2022 Jan; 9(2):e2103041. PubMed ID: 34738729
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient Room-Temperature Phosphorescence of a Solid-State Supramolecule Enhanced by Cucurbit[6]uril.
    Zhang ZY; Chen Y; Liu Y
    Angew Chem Int Ed Engl; 2019 Apr; 58(18):6028-6032. PubMed ID: 30848043
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Room-Temperature Phosphorescence Metal-Organic Hybrids: Structures, Properties, and Applications.
    Li X; Wang Y; Zhang Z; Cai S; An Z; Huang W
    Adv Mater; 2024 Apr; 36(15):e2308290. PubMed ID: 37884272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Excellent Persistent Near-Infrared Room Temperature Phosphorescence from Highly Efficient Host-Guest Systems.
    Li S; Gu J; Wang J; Yuan W; Ye G; Yuan L; Liao Q; Wang L; Li Z; Li Q
    Adv Sci (Weinh); 2024 Jul; 11(28):e2402846. PubMed ID: 38757635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Near-Infrared Phosphorescent Switch of Diarylethene Phenylpyridinium Derivative and Cucurbit[8]uril for Cell Imaging.
    Wang C; Liu YH; Liu Y
    Small; 2022 May; 18(21):e2201821. PubMed ID: 35460176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.