These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38270589)

  • 1. Gate Capacitance Coupling of Double-Gate Carbon Nanotube Network Transistors.
    An Y; Lee H; Ko J; Yang HI; Min G; Kim DM; Kim DH; Bae JH; Kang MH; Choi SJ
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):6221-6227. PubMed ID: 38270589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Dual-Gate Transistors Based on Aligned Carbon Nanotubes.
    Lv J; Shen Z; Meng D; Peng LM; Qiu C
    ACS Appl Mater Interfaces; 2024 Oct; 16(43):58864-58871. PubMed ID: 39405431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study on top-gated and bottom-gated multilayer MoS
    Zou X; Xu J; Huang H; Zhu Z; Wang H; Li B; Liao L; Fang G
    Nanotechnology; 2018 Jun; 29(24):245201. PubMed ID: 29582776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gate Quantum Capacitance Effects in Nanoscale Transistors.
    Desai SB; Fahad HM; Lundberg T; Pitner G; Kim H; Chrzan D; Wong HP; Javey A
    Nano Lett; 2019 Oct; 19(10):7130-7137. PubMed ID: 31532995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay.
    Svensson J; Tarakanov Y; Lee DS; Kinaret JM; Park YW; Campbell EE
    Nanotechnology; 2008 Aug; 19(32):325201. PubMed ID: 21828807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering.
    Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM
    ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor.
    Lee D; Lee BH; Yoon J; Ahn DC; Park JY; Hur J; Kim MS; Jeon SB; Kang MH; Kim K; Lim M; Choi SJ; Choi YK
    ACS Nano; 2016 Dec; 10(12):10894-10900. PubMed ID: 28024320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors.
    Hartmann M; Tittmann-Otto J; Böttger S; Heldt G; Claus M; Schulz SE; Schröter M; Hermann S
    ACS Appl Mater Interfaces; 2020 Jun; 12(24):27461-27466. PubMed ID: 32436374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cost-effective method for fabricating carbon nanotube network transistors by reusing a 99% semiconducting carbon nanotube solution.
    Jeon JW; Lee Y; Park GH; Kim DH; Kim DM; Kang MH; Choi SJ
    Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35259734
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving Carbon Nanotube-Based Radiofrequency Field-Effect Transistors by the Device Architecture and Doping Process.
    Ren L; Zhou J; Pan Z; Li H; Ding L; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):12813-12820. PubMed ID: 38412248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Carbon nanotube complementary wrap-gate transistors.
    Franklin AD; Koswatta SO; Farmer DB; Smith JT; Gignac L; Breslin CM; Han SJ; Tulevski GS; Miyazoe H; Haensch W; Tersoff J
    Nano Lett; 2013 Jun; 13(6):2490-5. PubMed ID: 23638708
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of Double-Gate Carbon Nanotube FET Characteristics for Short Channel Devices.
    Moorthy VM; Venkatesan R; Srivastava VM
    Recent Pat Nanotechnol; 2023 Sep; ():. PubMed ID: 37904555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Graphene and Carbon Nanotube Heterojunction Transistors with Individual Gate Control.
    Shiomi M; Mochizuki Y; Imakita Y; Arie T; Akita S; Takei K
    ACS Nano; 2019 Apr; 13(4):4771-4777. PubMed ID: 30933474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Capacitance-Voltage Characteristics of Thin-film Transistors Fabricated with Solution-Processed Semiconducting Carbon Nanotube Networks.
    Cai L; Zhang S; Miao J; Wei Q; Wang C
    Nanoscale Res Lett; 2015 Dec; 10(1):999. PubMed ID: 26168866
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors.
    Zhu M; Zhou J; Sun P; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47756-47763. PubMed ID: 34581560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices.
    Ding L; Wang S; Zhang Z; Zeng Q; Wang Z; Pei T; Yang L; Liang X; Shen J; Chen Q; Cui R; Li Y; Peng LM
    Nano Lett; 2009 Dec; 9(12):4209-14. PubMed ID: 19995085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.