These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
134 related articles for article (PubMed ID: 38270589)
1. Gate Capacitance Coupling of Double-Gate Carbon Nanotube Network Transistors. An Y; Lee H; Ko J; Yang HI; Min G; Kim DM; Kim DH; Bae JH; Kang MH; Choi SJ ACS Appl Mater Interfaces; 2024 Feb; 16(5):6221-6227. PubMed ID: 38270589 [TBL] [Abstract][Full Text] [Related]
2. High-Performance Dual-Gate Transistors Based on Aligned Carbon Nanotubes. Lv J; Shen Z; Meng D; Peng LM; Qiu C ACS Appl Mater Interfaces; 2024 Oct; 16(43):58864-58871. PubMed ID: 39405431 [TBL] [Abstract][Full Text] [Related]
3. A comparative study on top-gated and bottom-gated multilayer MoS Zou X; Xu J; Huang H; Zhu Z; Wang H; Li B; Liao L; Fang G Nanotechnology; 2018 Jun; 29(24):245201. PubMed ID: 29582776 [TBL] [Abstract][Full Text] [Related]
4. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. Yang Y; Ding L; Han J; Zhang Z; Peng LM ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433 [TBL] [Abstract][Full Text] [Related]
5. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length? Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135 [TBL] [Abstract][Full Text] [Related]
6. Gate Quantum Capacitance Effects in Nanoscale Transistors. Desai SB; Fahad HM; Lundberg T; Pitner G; Kim H; Chrzan D; Wong HP; Javey A Nano Lett; 2019 Oct; 19(10):7130-7137. PubMed ID: 31532995 [TBL] [Abstract][Full Text] [Related]
7. A carbon nanotube gated carbon nanotube transistor with 5 ps gate delay. Svensson J; Tarakanov Y; Lee DS; Kinaret JM; Park YW; Campbell EE Nanotechnology; 2008 Aug; 19(32):325201. PubMed ID: 21828807 [TBL] [Abstract][Full Text] [Related]
8. Self-aligned U-gate carbon nanotube field-effect transistor with extremely small parasitic capacitance and drain-induced barrier lowering. Ding L; Wang Z; Pei T; Zhang Z; Wang S; Xu H; Peng F; Li Y; Peng LM ACS Nano; 2011 Apr; 5(4):2512-9. PubMed ID: 21370813 [TBL] [Abstract][Full Text] [Related]
9. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293 [TBL] [Abstract][Full Text] [Related]
10. Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor. Lee D; Lee BH; Yoon J; Ahn DC; Park JY; Hur J; Kim MS; Jeon SB; Kang MH; Kim K; Lim M; Choi SJ; Choi YK ACS Nano; 2016 Dec; 10(12):10894-10900. PubMed ID: 28024320 [TBL] [Abstract][Full Text] [Related]
11. Gate Spacer Investigation for Improving the Speed of High-Frequency Carbon Nanotube-Based Field-Effect Transistors. Hartmann M; Tittmann-Otto J; Böttger S; Heldt G; Claus M; Schulz SE; Schröter M; Hermann S ACS Appl Mater Interfaces; 2020 Jun; 12(24):27461-27466. PubMed ID: 32436374 [TBL] [Abstract][Full Text] [Related]
12. Cost-effective method for fabricating carbon nanotube network transistors by reusing a 99% semiconducting carbon nanotube solution. Jeon JW; Lee Y; Park GH; Kim DH; Kim DM; Kang MH; Choi SJ Nanotechnology; 2022 Mar; 33(24):. PubMed ID: 35259734 [TBL] [Abstract][Full Text] [Related]
13. Improving Carbon Nanotube-Based Radiofrequency Field-Effect Transistors by the Device Architecture and Doping Process. Ren L; Zhou J; Pan Z; Li H; Ding L; Zhang Z; Peng LM ACS Appl Mater Interfaces; 2024 Mar; 16(10):12813-12820. PubMed ID: 38412248 [TBL] [Abstract][Full Text] [Related]