These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 38270726)

  • 1. Convolutional neural networks for the differentiation between benign and malignant renal tumors with a multicenter international computed tomography dataset.
    Klontzas ME; Kalarakis G; Koltsakis E; Papathomas T; Karantanas AH; Tzortzakakis A
    Insights Imaging; 2024 Jan; 15(1):26. PubMed ID: 38270726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning enables the differentiation between early and late stages of hip avascular necrosis.
    Klontzas ME; Vassalou EE; Spanakis K; Meurer F; Woertler K; Zibis A; Marias K; Karantanas AH
    Eur Radiol; 2024 Feb; 34(2):1179-1186. PubMed ID: 37581656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Learning for the Differential Diagnosis between Transient Osteoporosis and Avascular Necrosis of the Hip.
    Klontzas ME; Stathis I; Spanakis K; Zibis AH; Marias K; Karantanas AH
    Diagnostics (Basel); 2022 Aug; 12(8):. PubMed ID: 36010220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiation between subchondral insufficiency fractures and advanced osteoarthritis of the knee using transfer learning and an ensemble of convolutional neural networks.
    Klontzas ME; Vassalou EE; Kakkos GA; Spanakis K; Zibis A; Marias K; Karantanas AH
    Injury; 2022 Jun; 53(6):2035-2040. PubMed ID: 35331475
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recognizing pathology of renal tumor from macroscopic cross-section image by deep learning.
    Lin Z; Yang W; Zhang W; Jiang C; Chu J; Yang J; Yuan X
    Biomed Eng Online; 2023 Jan; 22(1):3. PubMed ID: 36670469
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison between deep learning convolutional neural networks and radiologists in the differentiation of benign and malignant thyroid nodules on CT images.
    Zhao HB; Liu C; Ye J; Chang LF; Xu Q; Shi BW; Liu LL; Yin YL; Shi BB
    Endokrynol Pol; 2021; 72(3):217-225. PubMed ID: 33619712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Image-Based Differentiation of Bacterial and Fungal Keratitis Using Deep Convolutional Neural Networks.
    Redd TK; Prajna NV; Srinivasan M; Lalitha P; Krishnan T; Rajaraman R; Venugopal A; Acharya N; Seitzman GD; Lietman TM; Keenan JD; Campbell JP; Song X
    Ophthalmol Sci; 2022 Jun; 2(2):100119. PubMed ID: 36249698
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automated classification of solid renal masses on contrast-enhanced computed tomography images using convolutional neural network with decision fusion.
    Zabihollahy F; Schieda N; Krishna S; Ukwatta E
    Eur Radiol; 2020 Sep; 30(9):5183-5190. PubMed ID: 32350661
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing common renal cell carcinomas from benign renal tumors based on machine learning: comparing various CT imaging phases, slices, tumor sizes, and ROI segmentation strategies.
    Zhou T; Guan J; Feng B; Xue H; Cui J; Kuang Q; Chen Y; Xu K; Lin F; Cui E; Long W
    Eur Radiol; 2023 Jun; 33(6):4323-4332. PubMed ID: 36645455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Malignancy risk stratification of cystic renal lesions based on a contrast-enhanced CT-based machine learning model and a clinical decision algorithm.
    Dana J; Lefebvre TL; Savadjiev P; Bodard S; Gauvin S; Bhatnagar SR; Forghani R; Hélénon O; Reinhold C
    Eur Radiol; 2022 Jun; 32(6):4116-4127. PubMed ID: 35066631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of Deep Convolutional Neural Networks for Discriminating Benign, Borderline, and Malignant Serous Ovarian Tumors From Ultrasound Images.
    Wang H; Liu C; Zhao Z; Zhang C; Wang X; Li H; Wu H; Liu X; Li C; Qi L; Ma W
    Front Oncol; 2021; 11():770683. PubMed ID: 34988015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging.
    Xi IL; Zhao Y; Wang R; Chang M; Purkayastha S; Chang K; Huang RY; Silva AC; Vallières M; Habibollahi P; Fan Y; Zou B; Gade TP; Zhang PJ; Soulen MC; Zhang Z; Bai HX; Stavropoulos SW
    Clin Cancer Res; 2020 Apr; 26(8):1944-1952. PubMed ID: 31937619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using deep learning to distinguish malignant from benign parotid tumors on plain computed tomography images.
    Hu Z; Wang B; Pan X; Cao D; Gao A; Yang X; Chen Y; Lin Z
    Front Oncol; 2022; 12():919088. PubMed ID: 35978811
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic contrast-enhanced computed tomography diagnosis of primary liver cancers using transfer learning of pretrained convolutional neural networks: Is registration of multiphasic images necessary?
    Yamada A; Oyama K; Fujita S; Yoshizawa E; Ichinohe F; Komatsu D; Fujinaga Y
    Int J Comput Assist Radiol Surg; 2019 Aug; 14(8):1295-1301. PubMed ID: 31054130
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of Small (≤ 4 cm) Renal Masses on Multiphase Contrast-Enhanced CT by Deep Learning.
    Tanaka T; Huang Y; Marukawa Y; Tsuboi Y; Masaoka Y; Kojima K; Iguchi T; Hiraki T; Gobara H; Yanai H; Nasu Y; Kanazawa S
    AJR Am J Roentgenol; 2020 Mar; 214(3):605-612. PubMed ID: 31913072
    [No Abstract]   [Full Text] [Related]  

  • 16. Leveraging open dataset and transfer learning for accurate recognition of chronic pulmonary embolism from CT angiogram maximum intensity projection images.
    Vainio T; Mäkelä T; Arkko A; Savolainen S; Kangasniemi M
    Eur Radiol Exp; 2023 Jun; 7(1):33. PubMed ID: 37340248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and diagnosis of dental caries using a deep learning-based convolutional neural network algorithm.
    Lee JH; Kim DH; Jeong SN; Choi SH
    J Dent; 2018 Oct; 77():106-111. PubMed ID: 30056118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing Renal Tumor Detection: Leveraging Artificial Neural Networks in Computed Tomography Analysis.
    Glembin M; Obuchowski A; Klaudel B; Rydziński B; Karski R; Syty P; Jasik P; Narożański WJ
    Med Sci Monit; 2023 Jun; 29():e939462. PubMed ID: 37279185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A deep learning-based diagnostic pattern for ultrasound breast imaging: can it reduce unnecessary biopsy?
    Zhu YC; Sheng JG; Deng SH; Jiang Q; Guo J
    Gland Surg; 2022 Sep; 11(9):1529-1537. PubMed ID: 36221270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prediction of melanoma Breslow thickness using deep transfer learning algorithms.
    Hernández-Rodríguez JC; Durán-López L; Domínguez-Morales JP; Ortiz-Álvarez J; Conejo-Mir J; Pereyra-Rodriguez JJ
    Clin Exp Dermatol; 2023 Jul; 48(7):752-758. PubMed ID: 36970775
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.