BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 38271060)

  • 21. A Natural Language Processing Model for COVID-19 Detection Based on Dutch General Practice Electronic Health Records by Using Bidirectional Encoder Representations From Transformers: Development and Validation Study.
    Homburg M; Meijer E; Berends M; Kupers T; Olde Hartman T; Muris J; de Schepper E; Velek P; Kuiper J; Berger M; Peters L
    J Med Internet Res; 2023 Oct; 25():e49944. PubMed ID: 37792444
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Entity Extraction Pipeline for Medical Text Records Using Large Language Models: Analytical Study.
    Wang L; Ma Y; Bi W; Lv H; Li Y
    J Med Internet Res; 2024 Mar; 26():e54580. PubMed ID: 38551633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. KEBLM: Knowledge-Enhanced Biomedical Language Models.
    Lai TM; Zhai C; Ji H
    J Biomed Inform; 2023 Jul; 143():104392. PubMed ID: 37211194
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Automatic quantitative stroke severity assessment based on Chinese clinical named entity recognition with domain-adaptive pre-trained large language model.
    Gu Z; He X; Yu P; Jia W; Yang X; Peng G; Hu P; Chen S; Chen H; Lin Y
    Artif Intell Med; 2024 Apr; 150():102822. PubMed ID: 38553162
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Challenges and barriers of using large language models (LLM) such as ChatGPT for diagnostic medicine with a focus on digital pathology - a recent scoping review.
    Ullah E; Parwani A; Baig MM; Singh R
    Diagn Pathol; 2024 Feb; 19(1):43. PubMed ID: 38414074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. End-to-end pseudonymization of fine-tuned clinical BERT models : Privacy preservation with maintained data utility.
    Vakili T; Henriksson A; Dalianis H
    BMC Med Inform Decis Mak; 2024 Jun; 24(1):162. PubMed ID: 38915012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comprehensive evaluation of large Language models on benchmark biomedical text processing tasks.
    Jahan I; Laskar MTR; Peng C; Huang JX
    Comput Biol Med; 2024 Mar; 171():108189. PubMed ID: 38447502
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Is ChatGPT a "Fire of Prometheus" for Non-Native English-Speaking Researchers in Academic Writing?
    Hwang SI; Lim JS; Lee RW; Matsui Y; Iguchi T; Hiraki T; Ahn H
    Korean J Radiol; 2023 Oct; 24(10):952-959. PubMed ID: 37793668
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redefining Health Care Data Interoperability: Empirical Exploration of Large Language Models in Information Exchange.
    Yoon D; Han C; Kim DW; Kim S; Bae S; Ryu JA; Choi Y
    J Med Internet Res; 2024 May; 26():e56614. PubMed ID: 38819879
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implications of large language models such as ChatGPT for dental medicine.
    Eggmann F; Weiger R; Zitzmann NU; Blatz MB
    J Esthet Restor Dent; 2023 Oct; 35(7):1098-1102. PubMed ID: 37017291
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ChatGPT and large language model (LLM) chatbots: The current state of acceptability and a proposal for guidelines on utilization in academic medicine.
    Kim JK; Chua M; Rickard M; Lorenzo A
    J Pediatr Urol; 2023 Oct; 19(5):598-604. PubMed ID: 37328321
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identifying and Extracting Rare Diseases and Their Phenotypes with Large Language Models.
    Shyr C; Hu Y; Bastarache L; Cheng A; Hamid R; Harris P; Xu H
    J Healthc Inform Res; 2024 Jun; 8(2):438-461. PubMed ID: 38681753
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Prevalence Estimation of Protected Health Information in Swedish Clinical Text.
    Henriksson A; Kvist M; Dalianis H
    Stud Health Technol Inform; 2017; 235():216-220. PubMed ID: 28423786
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Classifying social determinants of health from unstructured electronic health records using deep learning-based natural language processing.
    Han S; Zhang RF; Shi L; Richie R; Liu H; Tseng A; Quan W; Ryan N; Brent D; Tsui FR
    J Biomed Inform; 2022 Mar; 127():103984. PubMed ID: 35007754
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Incorporating Domain Knowledge Into Language Models by Using Graph Convolutional Networks for Assessing Semantic Textual Similarity: Model Development and Performance Comparison.
    Chang D; Lin E; Brandt C; Taylor RA
    JMIR Med Inform; 2021 Nov; 9(11):e23101. PubMed ID: 34842531
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Detecting Protected Health Information in Heterogeneous Clinical Notes.
    Henriksson A; Kvist M; Dalianis H
    Stud Health Technol Inform; 2017; 245():393-397. PubMed ID: 29295123
    [TBL] [Abstract][Full Text] [Related]  

  • 37. De-identification of clinical free text using natural language processing: A systematic review of current approaches.
    Kovačević A; Bašaragin B; Milošević N; Nenadić G
    Artif Intell Med; 2024 May; 151():102845. PubMed ID: 38555848
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Artificial Intelligence Learning Semantics via External Resources for Classifying Diagnosis Codes in Discharge Notes.
    Lin C; Hsu CJ; Lou YS; Yeh SJ; Lee CC; Su SL; Chen HC
    J Med Internet Res; 2017 Nov; 19(11):e380. PubMed ID: 29109070
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Text de-identification for privacy protection: a study of its impact on clinical text information content.
    Meystre SM; Ferrández Ó; Friedlin FJ; South BR; Shen S; Samore MH
    J Biomed Inform; 2014 Aug; 50():142-50. PubMed ID: 24502938
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utility of artificial intelligence-based large language models in ophthalmic care.
    Biswas S; Davies LN; Sheppard AL; Logan NS; Wolffsohn JS
    Ophthalmic Physiol Opt; 2024 May; 44(3):641-671. PubMed ID: 38404172
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.