These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38271166)

  • 1. Cross-Subject Motor Imagery Decoding by Transfer Learning of Tactile ERD.
    Zhong Y; Yao L; Pan G; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():662-671. PubMed ID: 38271166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Motor Imagery Decoding by Calibration Model-Assisted With Tactile ERD.
    Zhong Y; Yao L; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():4295-4305. PubMed ID: 37883287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion.
    Yao L; Meng J; Sheng X; Zhang D; Zhu X
    J Neural Eng; 2015 Feb; 12(1):016005. PubMed ID: 25461477
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Weighted Transfer Learning for Improving Motor Imagery-Based Brain-Computer Interface.
    Azab AM; Mihaylova L; Ang KK; Arvaneh M
    IEEE Trans Neural Syst Rehabil Eng; 2019 Jul; 27(7):1352-1359. PubMed ID: 31217122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EEG channel selection method for motor imagery based brain-computer interface and neurofeedback using Granger causality.
    Varsehi H; Firoozabadi SMP
    Neural Netw; 2021 Jan; 133():193-206. PubMed ID: 33220643
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward calibration-free motor imagery brain-computer interfaces: a VGG-based convolutional neural network and WGAN approach.
    Habashi AG; Azab AM; Eldawlatly S; Aly GM
    J Neural Eng; 2024 Jul; 21(4):. PubMed ID: 39029497
    [No Abstract]   [Full Text] [Related]  

  • 7. Reducing the Calibration Time in Somatosensory BCI by Using Tactile ERD.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1870-1876. PubMed ID: 35767500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of subject-independent and subject-specific EEG-based BCI using LDA and SVM classifiers.
    Dos Santos EM; San-Martin R; Fraga FJ
    Med Biol Eng Comput; 2023 Mar; 61(3):835-845. PubMed ID: 36626112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Explainable cross-task adaptive transfer learning for motor imagery EEG classification.
    Miao M; Yang Z; Zeng H; Zhang W; Xu B; Hu W
    J Neural Eng; 2023 Nov; 20(6):. PubMed ID: 37963394
    [No Abstract]   [Full Text] [Related]  

  • 10. Across-subject offline decoding of motor imagery from MEG and EEG.
    Halme HL; Parkkonen L
    Sci Rep; 2018 Jul; 8(1):10087. PubMed ID: 29973645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing performance of a motor imagery based brain-computer interface by incorporating electrical stimulation-induced SSSEP.
    Yi W; Qiu S; Wang K; Qi H; Zhao X; He F; Zhou P; Yang J; Ming D
    J Neural Eng; 2017 Apr; 14(2):026002. PubMed ID: 28004644
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of spectral and temporal combinations in CSP-based methods for decoding hand motor imagery tasks.
    Blanco-Diaz CF; Antelis JM; Ruiz-Olaya AF
    J Neurosci Methods; 2022 Apr; 371():109495. PubMed ID: 35150764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A brain-computer interface driven by imagining different force loads on a single hand: an online feasibility study.
    Wang K; Wang Z; Guo Y; He F; Qi H; Xu M; Ming D
    J Neuroeng Rehabil; 2017 Sep; 14(1):93. PubMed ID: 28893295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive transfer learning for EEG motor imagery classification with deep Convolutional Neural Network.
    Zhang K; Robinson N; Lee SW; Guan C
    Neural Netw; 2021 Apr; 136():1-10. PubMed ID: 33401114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CSP-TSM: Optimizing the performance of Riemannian tangent space mapping using common spatial pattern for MI-BCI.
    Kumar S; Mamun K; Sharma A
    Comput Biol Med; 2017 Dec; 91():231-242. PubMed ID: 29100117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transferring a deep learning model from healthy subjects to stroke patients in a motor imagery brain-computer interface.
    Nagarajan A; Robinson N; Ang KK; Chua KSG; Chew E; Guan C
    J Neural Eng; 2024 Jan; 21(1):. PubMed ID: 38091617
    [No Abstract]   [Full Text] [Related]  

  • 18. Tactile Sensation Assisted Motor Imagery Training for Enhanced BCI Performance: A Randomized Controlled Study.
    Zhong Y; Yao L; Wang J; Wang Y
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):694-702. PubMed ID: 36001509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cross-dataset adaptive domain selection transfer learning framework for motor imagery-based brain-computer interfaces.
    Jin J; Bai G; Xu R; Qin K; Sun H; Wang X; Cichocki A
    J Neural Eng; 2024 Jun; 21(3):. PubMed ID: 38885683
    [No Abstract]   [Full Text] [Related]  

  • 20. Achieving a hybrid brain-computer interface with tactile selective attention and motor imagery.
    Ahn S; Ahn M; Cho H; Chan Jun S
    J Neural Eng; 2014 Dec; 11(6):066004. PubMed ID: 25307730
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.