These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38271738)

  • 1. A model-based direct inversion network (MDIN) for dual spectral computed tomography.
    Zhou H; Zhang H; Zhao X; Zhang P; Zhu Y
    Phys Med Biol; 2024 Feb; 69(5):. PubMed ID: 38271738
    [No Abstract]   [Full Text] [Related]  

  • 2. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. One-step inverse generation network for sparse-view dual-energy CT reconstruction and material imaging.
    Zhang X; Li L; Wang S; Liang N; Cai A; Yan B
    Phys Med Biol; 2024 Jul; 69(14):. PubMed ID: 38955333
    [No Abstract]   [Full Text] [Related]  

  • 4. A dual-domain neural network based on sinogram synthesis for sparse-view CT reconstruction.
    Zhang P; Li K
    Comput Methods Programs Biomed; 2022 Nov; 226():107168. PubMed ID: 36219892
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-scale dilated dense reconstruction network for limited-angle computed tomography.
    Zhou H; Zhu Y; Zhang H; Zhao X; Zhang P
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36821860
    [No Abstract]   [Full Text] [Related]  

  • 6. Image domain dual material decomposition for dual-energy CT using butterfly network.
    Zhang W; Zhang H; Wang L; Wang X; Hu X; Cai A; Li L; Niu T; Yan B
    Med Phys; 2019 May; 46(5):2037-2051. PubMed ID: 30883808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An extended algebraic reconstruction technique (E-ART) for dual spectral CT.
    Zhao Y; Zhao X; Zhang P
    IEEE Trans Med Imaging; 2015 Mar; 34(3):761-8. PubMed ID: 25438303
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dual-energy head cone-beam CT using a dual-layer flat-panel detector: Hybrid material decomposition and a feasibility study.
    Wang Z; Zhou H; Gu S; Xia Y; Liao H; Deng Y; Gao H
    Med Phys; 2023 Nov; 50(11):6762-6778. PubMed ID: 37675888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined iterative reconstruction and image-domain decomposition for dual energy CT using total-variation regularization.
    Dong X; Niu T; Zhu L
    Med Phys; 2014 May; 41(5):051909. PubMed ID: 24784388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sam's Net: A Self-Augmented Multistage Deep-Learning Network for End-to-End Reconstruction of Limited Angle CT.
    Chen C; Xing Y; Gao H; Zhang L; Chen Z
    IEEE Trans Med Imaging; 2022 Oct; 41(10):2912-2924. PubMed ID: 35576423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A neural network-based method for spectral distortion correction in photon counting x-ray CT.
    Touch M; Clark DP; Barber W; Badea CT
    Phys Med Biol; 2016 Aug; 61(16):6132-53. PubMed ID: 27469292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A practical material decomposition method for x-ray dual spectral computed tomography.
    Hu J; Zhao X
    J Xray Sci Technol; 2016 Mar; 24(3):407-25. PubMed ID: 27257878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metal artifact reduction method based on a constrained beam-hardening estimator for polychromatic x-ray CT.
    Hur J; Kim D; Shin YG; Lee H
    Phys Med Biol; 2021 Mar; 66(6):065025. PubMed ID: 33498020
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep-learning-based direct inversion for material decomposition.
    Gong H; Tao S; Rajendran K; Zhou W; McCollough CH; Leng S
    Med Phys; 2020 Dec; 47(12):6294-6309. PubMed ID: 33020942
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduce beam hardening artifacts of polychromatic X-ray computed tomography by an iterative approximation approach.
    Shi H; Yang Z; Luo S
    J Xray Sci Technol; 2017; 25(3):417-428. PubMed ID: 28157119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An improved iterative neural network for high-quality image-domain material decomposition in dual-energy CT.
    Li Z; Long Y; Chun IY
    Med Phys; 2023 Apr; 50(4):2195-2211. PubMed ID: 35735056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Incorporation of residual attention modules into two neural networks for low-dose CT denoising.
    Li M; Du Q; Duan L; Yang X; Zheng J; Jiang H; Li M
    Med Phys; 2021 Jun; 48(6):2973-2990. PubMed ID: 33890681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MDST: multi-domain sparse-view CT reconstruction based on convolution and swin transformer.
    Li Y; Sun X; Wang S; Li X; Qin Y; Pan J; Chen P
    Phys Med Biol; 2023 Apr; 68(9):. PubMed ID: 36889004
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.