These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 38271803)

  • 21. A fast self-cleaning SERS-active substrate based on an inorganic-organic hybrid nanobelt film.
    Hao R; Lin J; Wang H; Li B; Li F; Guo L
    Phys Chem Chem Phys; 2015 Aug; 17(32):20840-5. PubMed ID: 26214280
    [TBL] [Abstract][Full Text] [Related]  

  • 22. AgTNP@TiO
    Cheng H; Luo K; Wen X; Yang J; Li J
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Feb; 306():123562. PubMed ID: 37918094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metal-Organic Frameworks-Based Optical Nanosensors for Analytical and Bioanalytical Applications.
    Wen C; Li R; Chang X; Li N
    Biosensors (Basel); 2023 Jan; 13(1):. PubMed ID: 36671963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Highly efficient core-shell Ag@carbon dot modified TiO
    Jin J; Song W; Zhang N; Li L; Liu H; Yang B; Zhao B
    RSC Adv; 2020 Jul; 10(45):26639-26645. PubMed ID: 35515768
    [TBL] [Abstract][Full Text] [Related]  

  • 25. High selectivity of photocatalytic reduction of CO
    Zhang WD; Wang Y; Liang Y; Jiang AL; Gong H; Tian XY; Fu WS; Liao JZ; Chen P; Ma YZ
    Front Chem; 2022; 10():974907. PubMed ID: 35991597
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Designed Nanomaterials for Electrocatalytic Organic Hydrogenation Using Water as the Hydrogen Source.
    Liu C; Wu Y; Zhao B; Zhang B
    Acc Chem Res; 2023 Jul; 56(13):1872-1883. PubMed ID: 37316974
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability.
    Sun H; Cong S; Zheng Z; Wang Z; Chen Z; Zhao Z
    J Am Chem Soc; 2019 Jan; 141(2):870-878. PubMed ID: 30566339
    [TBL] [Abstract][Full Text] [Related]  

  • 28. C-H Arylation on Nickel Nanoparticles Monitored by In Situ Surface-Enhanced Raman Spectroscopy.
    Li Y; Hu Y; Shi F; Li H; Xie W; Chen J
    Angew Chem Int Ed Engl; 2019 Jul; 58(27):9049-9053. PubMed ID: 31025515
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Revealing the Role of Interfacial Properties on Catalytic Behaviors by in Situ Surface-Enhanced Raman Spectroscopy.
    Zhang H; Zhang XG; Wei J; Wang C; Chen S; Sun HL; Wang YH; Chen BH; Yang ZL; Wu DY; Li JF; Tian ZQ
    J Am Chem Soc; 2017 Aug; 139(30):10339-10346. PubMed ID: 28700232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metal-organic frameworks based surface-enhanced Raman spectroscopy technique for ultra-sensitive biomedical trace detection.
    Zhang Y; Xue C; Xu Y; Cui S; Ganeev AA; Kistenev YV; Gubal A; Chuchina V; Jin H; Cui D
    Nano Res; 2023; 16(2):2968-2979. PubMed ID: 36090613
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Plasmonic-mediated SC arylation and SS coupling on nanostructured silver electrodes monitored by in situ surface-enhanced Raman spectroscopy.
    Ling Y; Zhang M; Liu G; Wu D; Tang J
    J Colloid Interface Sci; 2024 Aug; 668():154-160. PubMed ID: 38677204
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Multifunctional Ni(OH)
    Wen X; Cheng H; Zhang W; You L; Li J
    Talanta; 2024 Jan; 266(Pt 2):125140. PubMed ID: 37659231
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Wrapping AgCl Nanostructures with Trimetallic Nanomeshes for Plasmon-Enhanced Catalysis and in Situ SERS Monitoring of Chemical Reactions.
    Ryu HJ; Shin H; Oh S; Joo JH; Choi Y; Lee JS
    ACS Appl Mater Interfaces; 2020 Jan; 12(2):2842-2853. PubMed ID: 31887004
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A composite prepared from gold nanoparticles and a metal organic framework (type MOF-74) for determination of 4-nitrothiophenol by surface-enhanced Raman spectroscopy.
    Zhang Y; Hu Y; Li G; Zhang R
    Mikrochim Acta; 2019 Jun; 186(7):477. PubMed ID: 31250191
    [TBL] [Abstract][Full Text] [Related]  

  • 36. State-of-the-Art Advancements in Photocatalytic Hydrogenation: Reaction Mechanism and Recent Progress in Metal-Organic Framework (MOF)-Based Catalysts.
    Guo M; Zhang M; Liu R; Zhang X; Li G
    Adv Sci (Weinh); 2022 Jan; 9(1):e2103361. PubMed ID: 34716687
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plasmonic Ag decorated AlOOH for highly sensitive SERS detection of affinity OH groups molecules enriched in hotspots.
    Yang Y; Li J; Ding Y; Song P; Xia L
    J Colloid Interface Sci; 2022 Nov; 626():729-739. PubMed ID: 35820208
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au).
    Sun D; Liu W; Fu Y; Fang Z; Sun F; Fu X; Zhang Y; Li Z
    Chemistry; 2014 Apr; 20(16):4780-8. PubMed ID: 24644131
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of recyclable SERS platform based on MoS
    Wei Q; Dong Q; Sun DW; Pu H
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Jan; 285():121895. PubMed ID: 36228505
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In Situ Monitoring of Dynamic Photocatalysis of Metal-Organic Frameworks by Three-Dimensional Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy.
    Cheng J; Cao H; Xu Y; Yang Y; He Y; Wang H
    Anal Chem; 2022 Apr; 94(14):5699-5706. PubMed ID: 35344343
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.