BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38272192)

  • 21. A novel method for the detection of sticking of tablets.
    Waimer F; Krumme M; Danz P; Tenter U; Schmidt PC
    Pharm Dev Technol; 1999 Aug; 4(3):359-67. PubMed ID: 10434281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression.
    Chattoraj S; Sun CC
    J Pharm Sci; 2018 Apr; 107(4):968-974. PubMed ID: 29247737
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developing Biologics Tablets: The Effects of Compression on the Structure and Stability of Bovine Serum Albumin and Lysozyme.
    Wei Y; Wang C; Jiang B; Sun CC; Middaugh CR
    Mol Pharm; 2019 Mar; 16(3):1119-1131. PubMed ID: 30698973
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The influence of engravings on the sticking of tablets. Investigations with an instrumented upper punch.
    Waimer F; Krumme M; Danz P; Tenter U; Schmidt PC
    Pharm Dev Technol; 1999 Aug; 4(3):369-75. PubMed ID: 10434282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Application of Externally Applied Lower Punch Vibration and its Effects on Tablet Manufacturing.
    Kalies A; Özcoban H; Leopold CS
    Pharm Res; 2019 Oct; 36(12):173. PubMed ID: 31659476
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Investigating the effect of tablet thickness and punch curvature on density distribution using finite elements method.
    Diarra H; Mazel V; Busignies V; Tchoreloff P
    Int J Pharm; 2015 Sep; 493(1-2):121-8. PubMed ID: 26200746
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into tablet sticking: a quantitative case study with an ibuprofen and methocarbamol-based formulation.
    Dembélé M; Hudon S; Simard JS; Abatzoglou N; Gosselin R
    Pharm Dev Technol; 2023 Jan; 28(1):40-50. PubMed ID: 36594269
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of new shaped punch to predict scale-up issue in tableting process.
    Aoki S; Uchiyama J; Ito M
    J Pharm Sci; 2014 Jan; 103(1):235-40. PubMed ID: 24218176
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance.
    Buys GM; du Plessis LH; Marais AF; Kotze AF; Hamman JH
    Curr Drug Deliv; 2013 Jun; 10(3):348-56. PubMed ID: 23545146
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution of the Die-Wall Pressure during the Compression of Biconvex Tablets: Experimental Results and Comparison with FEM Simulation.
    Mazel V; Diarra H; Busignies V; Tchoreloff P
    J Pharm Sci; 2015 Dec; 104(12):4339-4344. PubMed ID: 26460539
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sticking Detection by Repeated Compactions on a Single Tablet.
    Thomas J; Bui P; Zavaliangos A
    AAPS PharmSciTech; 2023 Nov; 24(8):237. PubMed ID: 37989970
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-contact Laser Interferometer Method to Characterize Tablet Punches: New Methodology to Assess Surface Roughness.
    Hughes H; Leane M; Wray PS; Tobyn M
    AAPS PharmSciTech; 2023 Oct; 24(7):209. PubMed ID: 37817056
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design.
    Dai S; Xu B; Zhang Z; Yu J; Wang F; Shi X; Qiao Y
    Int J Pharm; 2019 Dec; 572():118742. PubMed ID: 31648016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting the Occurrence of Sticking during Tablet Production by Shear Testing of a Pharmaceutical Powder.
    Nakamura S; Otsuka N; Yoshino Y; Sakamoto T; Yuasa H
    Chem Pharm Bull (Tokyo); 2016; 64(5):512-6. PubMed ID: 27150485
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Reduced Punch Sticking Propensity of Acesulfame by Salt Formation: Role of Crystal Mechanical Property and Surface Chemistry.
    Paul S; Wang C; Wang K; Sun CC
    Mol Pharm; 2019 Jun; 16(6):2700-2707. PubMed ID: 30973740
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Insight Into a Novel Strategy for the Design of Tablet Formulations Intended for Direct Compression.
    Capece M; Huang Z; Davé R
    J Pharm Sci; 2017 Jun; 106(6):1608-1617. PubMed ID: 28283431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prediction of Air Entrapment in Tableting: An Approximate Solution.
    Zavaliangos A; Katz JM; Daurio D; Johnson M; Pirjanian A; Alvarez-Nunez F
    J Pharm Sci; 2017 Dec; 106(12):3604-3612. PubMed ID: 28919383
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets.
    ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR
    Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression.
    Sun WJ; Aburub A; Sun CC
    J Pharm Sci; 2017 Jul; 106(7):1772-1777. PubMed ID: 28322940
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of the Punch Speed on the Die Wall/Powder Kinematic Friction During Tableting.
    Desbois L; Tchoreloff P; Mazel V
    J Pharm Sci; 2019 Oct; 108(10):3359-3365. PubMed ID: 31095957
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.