These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 3827245)

  • 21. Anaerobic treatment of atrazine bearing wastewater.
    Ghosh PK; Philip L; Bandyopadhyay M
    J Environ Sci Health B; 2001 May; 36(3):301-16. PubMed ID: 11411853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing waste contamination from animal-processing plants by anaerobic thermophilic fermentation and by flesh fly digestion.
    Marchaim U; Gelman A; Braverman Y
    Appl Biochem Biotechnol; 2003; 109(1-3):107-15. PubMed ID: 12794287
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Roles of methanogens on volatile organic sulfur compound production in anaerobically digested wastewater biosolids.
    Chen Y; Higgins MJ; Maas NA; Murthy SN; Toffey WE; Foster DJ
    Water Sci Technol; 2005; 52(1-2):67-72. PubMed ID: 16180410
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Constitutive dechlorination of chlorinated ethenes by a methanol degrading methanogenic consortium.
    van Eekert MH; Schröder TJ; van Rhee A; Stams AJ; Schraa G; Field JA
    Bioresour Technol; 2001 Apr; 77(2):163-70. PubMed ID: 11272023
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Automated equipment for anaerobic sludge parameters determination.
    Fdz-Polanco F; Nieto P; Pérez Elvira S; van der Zee FP; Fdz-Polanc M; García PA
    Water Sci Technol; 2005; 52(1-2):479-85. PubMed ID: 16180467
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Naphthenic acids and surrogate naphthenic acids in methanogenic microcosms.
    Holowenko FM; Mackinnon MD; Fedorak PM
    Water Res; 2001 Aug; 35(11):2595-606. PubMed ID: 11456157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Competition for hydrogen by human faecal bacteria: evidence for the predominance of methane producing bacteria.
    Strocchi A; Furne JK; Ellis CJ; Levitt MD
    Gut; 1991 Dec; 32(12):1498-501. PubMed ID: 1773956
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioremediation. Anaerobes to the rescue.
    Lovley DR
    Science; 2001 Aug; 293(5534):1444-6. PubMed ID: 11520973
    [No Abstract]   [Full Text] [Related]  

  • 29. Activated sludge-mediated biodegradation of dimethyl phthalate under fermentative conditions.
    Wu D; Mahmood Q; Wu L; Zheng P
    J Environ Sci (China); 2008; 20(8):922-6. PubMed ID: 18817069
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mineralization versus fermentation: evidence for two distinct anaerobic bacterial degradation pathways for dichloromethane.
    Chen G; Fisch AR; Gibson CM; Erin Mack E; Seger ES; Campagna SR; Löffler FE
    ISME J; 2020 Apr; 14(4):959-970. PubMed ID: 31907367
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.
    Park WJ; Ahn JH
    Environ Technol; 2011 Oct; 32(13-14):1533-40. PubMed ID: 22329144
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anaerobic biodegradation potentials in digested sludge, a freshwater swamp and a marine sediment.
    Madsen T; Rasmussen HB; Nilsson L
    Chemosphere; 1995 Nov; 31(10):4243-58. PubMed ID: 8520926
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.
    Dumas C; Perez S; Paul E; Lefebvre X
    Bioresour Technol; 2010 Apr; 101(8):2629-36. PubMed ID: 19959355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Assessment of metabolic properties and kinetic parameters of methanogenic sludge by on-line methane production rate measurements.
    Gonzalez-Gil G; Kleerebezem R; Lettinga G
    Appl Microbiol Biotechnol; 2002 Feb; 58(2):248-54. PubMed ID: 11876419
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Thermal pre-treatment of primary and secondary sludge at 70 degrees C prior to anaerobic digestion.
    Skiadas IV; Gavala HN; Lu J; Ahring BK
    Water Sci Technol; 2005; 52(1-2):161-6. PubMed ID: 16180423
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Efficient, high-speed methane fermentation for sewage sludge using subcritical water hydrolysis as pretreatment.
    Yoshida H; Tokumoto H; Ishii K; Ishii R
    Bioresour Technol; 2009 Jun; 100(12):2933-9. PubMed ID: 19254834
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic interactions in methanogenic and sulfate-reducing bioreactors.
    Stams AJ; Plugge CM; de Bok FA; van Houten BH; Lens P; Dijkman H; Weijma J
    Water Sci Technol; 2005; 52(1-2):13-20. PubMed ID: 16187442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesophilic and thermophilic anaerobic co-digestion of rendering plant and slaughterhouse wastes.
    Bayr S; Rantanen M; Kaparaju P; Rintala J
    Bioresour Technol; 2012 Jan; 104():28-36. PubMed ID: 22074907
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights into the methanogenic degradation of N, N-dimethylformamide: The functional microorganisms and their ecological relationships.
    Kong Z; Li L; Wu J; Zhang T; Li YY
    Bioresour Technol; 2019 Jan; 271():37-47. PubMed ID: 30261335
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Removal of polycyclic aromatic hydrocarbons (PAHs) from sewage sludge by anaerobic degradation.
    Christensen N; Batstone DJ; He Z; Angelidaki I; Schmidt JE
    Water Sci Technol; 2004; 50(9):237-44. PubMed ID: 15581018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.