These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 38273488)

  • 21. Role of marine biology in glacial-interglacial CO2 cycles.
    Kohfeld KE; Le Quéré C; Harrison SP; Anderson RF
    Science; 2005 Apr; 308(5718):74-8. PubMed ID: 15802597
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The role of PFAS in unsettling ocean carbon sequestration.
    Mahmoudnia A
    Environ Monit Assess; 2023 Jan; 195(2):310. PubMed ID: 36652110
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effect of increasing CO2 on the terrestrial carbon cycle.
    Schimel D; Stephens BB; Fisher JB
    Proc Natl Acad Sci U S A; 2015 Jan; 112(2):436-41. PubMed ID: 25548156
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Historical increases in land-derived nutrient inputs may alleviate effects of a changing physical climate on the oceanic carbon cycle.
    Lacroix F; Ilyina T; Mathis M; Laruelle GG; Regnier P
    Glob Chang Biol; 2021 Nov; 27(21):5491-5513. PubMed ID: 34351039
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evolution of carbon sinks in a changing climate.
    Fung IY; Doney SC; Lindsay K; John J
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11201-6. PubMed ID: 16061800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasingly negative tropical water-interannual CO
    Liu L; Ciais P; Wu M; Padrón RS; Friedlingstein P; Schwaab J; Gudmundsson L; Seneviratne SI
    Nature; 2023 Jun; 618(7966):755-760. PubMed ID: 37258674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of oceanic abiotic carbonate precipitation in future atmospheric CO
    Bialik OM; Sisma-Ventura G; Vogt-Vincent N; Silverman J; Katz T
    Sci Rep; 2022 Sep; 12(1):15970. PubMed ID: 36153366
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ocean carbon sequestration: Particle fragmentation by copepods as a significant unrecognised factor?: Explicitly representing the role of copepods in biogeochemical models may fundamentally improve understanding of future ocean carbon storage.
    Mayor DJ; Gentleman WC; Anderson TR
    Bioessays; 2020 Dec; 42(12):e2000149. PubMed ID: 33174616
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of the Southern Ocean in the global climate response to carbon emissions.
    Williams RG; Ceppi P; Roussenov V; Katavouta A; Meijers AJS
    Philos Trans A Math Phys Eng Sci; 2023 Jun; 381(2249):20220062. PubMed ID: 37150198
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacteria and Archaea Regulate Particulate Organic Matter Export in Suspended and Sinking Marine Particle Fractions.
    Dithugoe CD; Bezuidt OKI; Cavan EL; Froneman WP; Thomalla SJ; Makhalanyane TP
    mSphere; 2023 Jun; 8(3):e0042022. PubMed ID: 37093039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An observing system simulation for Southern Ocean carbon dioxide uptake.
    Majkut JD; Carter BR; Frölicher TL; Dufour CO; Rodgers KB; Sarmiento JL
    Philos Trans A Math Phys Eng Sci; 2014 Jul; 372(2019):20130046. PubMed ID: 24891388
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two modes of change in Southern Ocean productivity over the past million years.
    Jaccard SL; Hayes CT; Martínez-García A; Hodell DA; Anderson RF; Sigman DM; Haug GH
    Science; 2013 Mar; 339(6126):1419-23. PubMed ID: 23520109
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduced calcification of marine plankton in response to increased atmospheric CO2.
    Riebesell U; Zondervan I; Rost B; Tortell PD; Zeebe RE; Morel FM
    Nature; 2000 Sep; 407(6802):364-7. PubMed ID: 11014189
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Can microplastics pose a threat to ocean carbon sequestration?
    Shen M; Ye S; Zeng G; Zhang Y; Xing L; Tang W; Wen X; Liu S
    Mar Pollut Bull; 2020 Jan; 150():110712. PubMed ID: 31718860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Centennial-scale changes in the global carbon cycle during the last deglaciation.
    Marcott SA; Bauska TK; Buizert C; Steig EJ; Rosen JL; Cuffey KM; Fudge TJ; Severinghaus JP; Ahn J; Kalk ML; McConnell JR; Sowers T; Taylor KC; White JW; Brook EJ
    Nature; 2014 Oct; 514(7524):616-9. PubMed ID: 25355363
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions.
    Zeebe RE
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13739-44. PubMed ID: 23918402
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deglacial pulses of deep-ocean silicate into the subtropical North Atlantic Ocean.
    Meckler AN; Sigman DM; Gibson KA; François R; Martínez-García A; Jaccard SL; Röhl U; Peterson LC; Tiedemann R; Haug GH
    Nature; 2013 Mar; 495(7442):495-8. PubMed ID: 23538831
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The sequestration switch: removing industrial CO2 by direct ocean absorption.
    Ametistova L; Twidell J; Briden J
    Sci Total Environ; 2002 Apr; 289(1-3):213-23. PubMed ID: 12049397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Forensic carbon accounting: Assessing the role of seaweeds for carbon sequestration.
    Hurd CL; Law CS; Bach LT; Britton D; Hovenden M; Paine ER; Raven JA; Tamsitt V; Boyd PW
    J Phycol; 2022 Jun; 58(3):347-363. PubMed ID: 35286717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release.
    Rose KA; Sikes EL; Guilderson TP; Shane P; Hill TM; Zahn R; Spero HJ
    Nature; 2010 Aug; 466(7310):1093-7. PubMed ID: 20740012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.