These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 38273558)
21. Carry-over effects of seasonal migration on reproductive success through breeding site retention in a partially migratory bird. Morinay J; Daunt F; Morley TI; Fenn SR; Burthe SJ; Reid JM J Anim Ecol; 2024 Jul; 93(7):849-861. PubMed ID: 38751173 [TBL] [Abstract][Full Text] [Related]
22. Animal tracing with sulfur isotopes: Spatial segregation and climate variability in Africa likely contribute to population trends of a migratory songbird. Brlík V; Procházka P; Hansson B; Stricker CA; Yohannes E; Powell RL; Wunder MB J Anim Ecol; 2023 Jul; 92(7):1320-1331. PubMed ID: 36411970 [TBL] [Abstract][Full Text] [Related]
23. Failure to advance migratory phenology in response to climate change may pose a significant threat to a declining Nearctic-Neotropical songbird. Connare BM; Islam K Int J Biometeorol; 2022 Apr; 66(4):803-815. PubMed ID: 35032203 [TBL] [Abstract][Full Text] [Related]
24. Extreme spring conditions in the Arctic delay spring phenology of long-distance migratory songbirds. Boelman NT; Krause JS; Sweet SK; Chmura HE; Perez JH; Gough L; Wingfield JC Oecologia; 2017 Sep; 185(1):69-80. PubMed ID: 28779226 [TBL] [Abstract][Full Text] [Related]
25. Migration tactics and connectivity of a Nearctic-Neotropical migratory shorebird. Herbert JA; Mizrahi D; Taylor CM J Anim Ecol; 2022 Apr; 91(4):819-830. PubMed ID: 35118651 [TBL] [Abstract][Full Text] [Related]
26. Low migratory connectivity is common in long-distance migrant birds. Finch T; Butler SJ; Franco AM; Cresswell W J Anim Ecol; 2017 May; 86(3):662-673. PubMed ID: 28093769 [TBL] [Abstract][Full Text] [Related]
27. Characterization of MHC class I in a long distance migratory wader, the Icelandic black-tailed godwit. Pardal S; Drews A; Alves JA; Ramos JA; Westerdahl H Immunogenetics; 2017 Jul; 69(7):463-478. PubMed ID: 28534224 [TBL] [Abstract][Full Text] [Related]
28. When Siberia came to the Netherlands: the response of continental black-tailed godwits to a rare spring weather event. Senner NR; Verhoeven MA; Abad-Gómez JM; Gutiérrez JS; Hooijmeijer JC; Kentie R; Masero JA; Tibbitts TL; Piersma T J Anim Ecol; 2015 Sep; 84(5):1164-76. PubMed ID: 26033015 [TBL] [Abstract][Full Text] [Related]
29. Linking phenological events in migratory passerines with a changing climate: 50 years in the Laurel Highlands of Pennsylvania. McDermott ME; DeGroote LW PLoS One; 2017; 12(4):e0174247. PubMed ID: 28403152 [TBL] [Abstract][Full Text] [Related]
30. Vulnerability of Subarctic and Arctic breeding birds. Hof AR; Rodríguez-Castañeda G; Allen AM; Jansson R; Nilsson C Ecol Appl; 2017 Jan; 27(1):219-234. PubMed ID: 28052503 [TBL] [Abstract][Full Text] [Related]
31. Temporal shifts and temperature sensitivity of avian spring migratory phenology: a phylogenetic meta-analysis. Usui T; Butchart SH; Phillimore AB J Anim Ecol; 2017 Mar; 86(2):250-261. PubMed ID: 27859281 [TBL] [Abstract][Full Text] [Related]
32. Climate change leads to differential shifts in the timing of annual cycle stages in a migratory bird. Tomotani BM; van der Jeugd H; Gienapp P; de la Hera I; Pilzecker J; Teichmann C; Visser ME Glob Chang Biol; 2018 Feb; 24(2):823-835. PubMed ID: 29211325 [TBL] [Abstract][Full Text] [Related]
33. Widespread shifts in bird migration phenology are decoupled from parallel shifts in morphology. Zimova M; Willard DE; Winger BM; Weeks BC J Anim Ecol; 2021 Oct; 90(10):2348-2361. PubMed ID: 34151433 [TBL] [Abstract][Full Text] [Related]
34. Plasticity in female timing may explain earlier breeding in a North American songbird. Kimmitt AA; Becker DJ; Diller SN; Gerlach NM; Rosvall KA; Ketterson ED J Anim Ecol; 2022 Oct; 91(10):1988-1998. PubMed ID: 35819093 [TBL] [Abstract][Full Text] [Related]
35. Climate warming, ecological mismatch at arrival and population decline in migratory birds. Saino N; Ambrosini R; Rubolini D; von Hardenberg J; Provenzale A; Hüppop K; Hüppop O; Lehikoinen A; Lehikoinen E; Rainio K; Romano M; Sokolov L Proc Biol Sci; 2011 Mar; 278(1707):835-42. PubMed ID: 20861045 [TBL] [Abstract][Full Text] [Related]
36. Climate warming may affect the optimal timing of reproduction for migratory geese differently in the low and high Arctic. Lameris TK; de Jong ME; Boom MP; van der Jeugd HP; Litvin KE; Loonen MJJE; Nolet BA; Prop J Oecologia; 2019 Dec; 191(4):1003-1014. PubMed ID: 31624958 [TBL] [Abstract][Full Text] [Related]
37. Site selection and resource depletion in black-tailed godwits Limosa l. limosa eating rice during northward migration. Lourenço PM; Mandema FS; Hooijmeijer JC; Granadeiro JP; Piersma T J Anim Ecol; 2010 May; 79(3):522-8. PubMed ID: 20070431 [TBL] [Abstract][Full Text] [Related]
38. Phenological trends in the pre- and post-breeding migration of long-distance migratory birds. Lawrence KB; Barlow CR; Bensusan K; Perez C; Willis SG Glob Chang Biol; 2022 Jan; 28(2):375-389. PubMed ID: 34606660 [TBL] [Abstract][Full Text] [Related]
39. Migratory swans individually adjust their autumn migration and winter range to a warming climate. Linssen H; van Loon EE; Shamoun-Baranes JZ; Nuijten RJM; Nolet BA Glob Chang Biol; 2023 Dec; 29(24):6888-6899. PubMed ID: 37795645 [TBL] [Abstract][Full Text] [Related]
40. Absolute consistency: individual versus population variation in annual-cycle schedules of a long-distance migrant bird. Conklin JR; Battley PF; Potter MA PLoS One; 2013; 8(1):e54535. PubMed ID: 23342168 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]