These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 38273802)

  • 1. Cascaded elasto-inertial separation of malignant tumor cells from untreated malignant pleural and peritoneal effusions.
    Ni C; Wu D; Chen Y; Wang S; Xiang N
    Lab Chip; 2024 Feb; 24(4):697-706. PubMed ID: 38273802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-throughput and label-free enrichment of malignant tumor cells and clusters from pleural and peritoneal effusions using inertial microfluidics.
    Zhu Z; Li S; Wu D; Ren H; Ni C; Wang C; Xiang N; Ni Z
    Lab Chip; 2022 May; 22(11):2097-2106. PubMed ID: 35441644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Throughput Separation and Enrichment of Rare Malignant Tumor Cells from Large-Volume Effusions by Inertial Microfluidics.
    Ni C; Zhu Z; Zhou Z; Xiang N
    Methods Mol Biol; 2023; 2679():193-206. PubMed ID: 37300617
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-cost polymer-film spiral inertial microfluidic device for label-free separation of malignant tumor cells.
    Wang C; Chen Y; Gu X; Zhang X; Gao C; Dong L; Zheng S; Feng S; Xiang N
    Electrophoresis; 2022 Feb; 43(3):464-471. PubMed ID: 34611912
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-throughput concentration of rare malignant tumor cells from large-volume effusions by multistage inertial microfluidics.
    Xiang N; Ni Z
    Lab Chip; 2022 Feb; 22(4):757-767. PubMed ID: 35050294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput and simultaneous inertial separation of tumor cells and clusters from malignant effusions using spiral-contraction-expansion channels.
    Zhu Z; Ren H; Wu D; Ni Z; Xiang N
    Microsyst Nanoeng; 2024; 10():36. PubMed ID: 38482464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Separation of White Blood Cells From Whole Blood Using Inertial Microfluidics.
    Zhang J; Yuan D; Sluyter R; Yan S; Zhao Q; Xia H; Tan SH; Nguyen NT; Li W
    IEEE Trans Biomed Circuits Syst; 2017 Dec; 11(6):1422-1430. PubMed ID: 28866599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation.
    Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z
    Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrated Microfluidic Handheld Cell Sorter for High-Throughput Label-Free Malignant Tumor Cell Sorting.
    Jiang F; Xiang N
    Anal Chem; 2022 Jan; 94(3):1859-1866. PubMed ID: 35020366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A curved expansion-contraction microfluidic structure for inertial based separation of circulating tumor cells from blood samples.
    Ebrahimi S; Alishiri M; Pishbin E; Afjoul H; Shamloo A
    J Chromatogr A; 2023 Aug; 1705():464200. PubMed ID: 37429078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High resolution and rapid separation of bacteria from blood using elasto-inertial microfluidics.
    Narayana Iyengar S; Kumar T; MÃ¥rtensson G; Russom A
    Electrophoresis; 2021 Dec; 42(23):2538-2551. PubMed ID: 34510466
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning particle inertial separation in sinusoidal channels by embedding periodic obstacle microstructures.
    Cha H; Fallahi H; Dai Y; Yadav S; Hettiarachchi S; McNamee A; An H; Xiang N; Nguyen NT; Zhang J
    Lab Chip; 2022 Jul; 22(15):2789-2800. PubMed ID: 35587546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precise Size-Based Cell Separation via the Coupling of Inertial Microfluidics and Deterministic Lateral Displacement.
    Xiang N; Wang J; Li Q; Han Y; Huang D; Ni Z
    Anal Chem; 2019 Aug; 91(15):10328-10334. PubMed ID: 31304740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Continuous CTC separation through a DEP-based contraction-expansion inertial microfluidic channel.
    Islam MS; Chen X
    Biotechnol Prog; 2023; 39(4):e3341. PubMed ID: 36970770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Separation of Ultra-High-Density Cell Suspension via Elasto-Inertial Microfluidics.
    Kwon T; Choi K; Han J
    Small; 2021 Oct; 17(39):e2101880. PubMed ID: 34396694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent progress of inertial microfluidic-based cell separation.
    Xu X; Huang X; Sun J; Wang R; Yao J; Han W; Wei M; Chen J; Guo J; Sun L; Yin M
    Analyst; 2021 Nov; 146(23):7070-7086. PubMed ID: 34761757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inertia-Acoustophoresis Hybrid Microfluidic Device for Rapid and Efficient Cell Separation.
    Kim U; Oh B; Ahn J; Lee S; Cho Y
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.