These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38273814)

  • 1. Three-dimensional rotation of deformable cells at a bipolar electrode array using a rotating electric field.
    Wu Y; Yue Y; Zhang H; Ma X; Zhang Z; Li K; Meng Y; Wang S; Wang X; Huang W
    Lab Chip; 2024 Feb; 24(4):933-945. PubMed ID: 38273814
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controllable rotating behavior of individual dielectric microrod in a rotating electric field.
    Liu W; Ren Y; Tao Y; Li Y; Chen X
    Electrophoresis; 2017 Jun; 38(11):1427-1433. PubMed ID: 28213894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combined AC electroosmosis and dielectrophoresis for controlled rotation of microparticles.
    Walid Rezanoor M; Dutta P
    Biomicrofluidics; 2016 Mar; 10(2):024101. PubMed ID: 27014394
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D cell electrorotation and imaging for measuring multiple cellular biophysical properties.
    Huang L; Zhao P; Wang W
    Lab Chip; 2018 Aug; 18(16):2359-2368. PubMed ID: 29946598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis.
    Ren Y; Liu W; Liu J; Tao Y; Guo Y; Jiang H
    Biomicrofluidics; 2016 Sep; 10(5):054103. PubMed ID: 27703589
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Numerical Investigation of Enhancing Microfluidic Heterogeneous Immunoassay on Bipolar Electrodes Driven by Induced-Charge Electroosmosis in Rotating Electric Fields.
    Ge Z; Yan H; Liu W; Song C; Xue R; Ren Y
    Micromachines (Basel); 2020 Jul; 11(8):. PubMed ID: 32751505
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Generation of droplets with adjustable chemical concentrations based on fixed potential induced-charge electro-osmosis.
    Wu Y; Hu B; Ma X; Zhang H; Li W; Wang Y; Wang S
    Lab Chip; 2022 Jan; 22(2):403-412. PubMed ID: 34950939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2016 Dec; 88(23):11791-11798. PubMed ID: 27806196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Throughput Separation, Trapping, and Manipulation of Single Cells and Particles by Combined Dielectrophoresis at a Bipolar Electrode Array.
    Wu Y; Ren Y; Tao Y; Hou L; Jiang H
    Anal Chem; 2018 Oct; 90(19):11461-11469. PubMed ID: 30192521
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the distribution of rotational torque on electrorotation chips with 3D electrodes.
    Bahrieh G; Özgür E; Koyuncuoğlu A; Erdem M; Gündüz U; Külah H
    Electrophoresis; 2015 Aug; 36(15):1785-94. PubMed ID: 25963845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrorotation of leaky-dielectric and conducting microspheres in asymmetric electrolytes and angular velocity reversal.
    Miloh T; Nagler J
    Electrophoresis; 2020 Aug; 41(15):1296-1307. PubMed ID: 32357251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forces on biological cells due to applied alternating (AC) electric fields. II. Electro-rotation.
    Mahaworasilpa TL; Coster HG; George EP
    Biochim Biophys Acta; 1996 May; 1281(1):5-14. PubMed ID: 8652604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AC electric field induced dipole-based on-chip 3D cell rotation.
    Benhal P; Chase JG; Gaynor P; Oback B; Wang W
    Lab Chip; 2014 Aug; 14(15):2717-27. PubMed ID: 24933556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrorotation of a metal sphere immersed in an electrolyte of finite Debye length.
    García-Sánchez P; Ramos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Nov; 92(5):052313. PubMed ID: 26651701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrokinetics of metal cylinders.
    Flores-Mena JE; García-Sánchez P; Ramos A
    Phys Rev E; 2019 Mar; 99(3-1):032603. PubMed ID: 30999434
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrorotation of colloidal particles and cells depends on surface charge.
    Maier H
    Biophys J; 1997 Sep; 73(3):1617-26. PubMed ID: 9284328
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Label free and high-throughput discrimination of cells at a bipolar electrode array using the AC electrodynamics.
    Wu Y; Yue Y; Zhang H; Ma X; Li K; Zeng W; Wang S; Meng Y
    Anal Chim Acta; 2023 Oct; 1278():341701. PubMed ID: 37709447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the permeabilization of a single cell in a microfluidic device, through the estimation of its dielectric properties based on combined dielectrophoresis and electrorotation in situ experiments.
    Trainito CI; Français O; Le Pioufle B
    Electrophoresis; 2015 May; 36(9-10):1115-22. PubMed ID: 25641658
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous-flow electrorotation (cROT): improved throughput characterization for dielectric properties of cancer cells.
    Yoda K; Ichikawa Y; Motosuke M
    Lab Chip; 2023 Nov; 23(23):4986-4996. PubMed ID: 37889126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Measurement of dielectric properties of cells at single-cell resolution using electrorotation.
    Li Y; Huang C; Han SI; Han A
    Biomed Microdevices; 2022 Jun; 24(2):23. PubMed ID: 35771277
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.