These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 38273893)
1. Satellite and Reynolds N; Schaeffer BA; Guertault L; Nelson NG J Hydrol (Amst); 2023 Apr; 619():1-14. PubMed ID: 38273893 [TBL] [Abstract][Full Text] [Related]
2. Satellite-derived cyanobacteria frequency and magnitude in headwaters & near-dam reservoir surface waters of the Southern U.S. Ignatius AR; Purucker ST; Schaeffer BA; Wolfe K; Urquhart E; Smith D Sci Total Environ; 2022 May; 822():153568. PubMed ID: 35114225 [TBL] [Abstract][Full Text] [Related]
3. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event. Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446 [TBL] [Abstract][Full Text] [Related]
4. Hurricane Disturbance Stimulated Nitrification and Altered Ammonia Oxidizer Community Structure in Lake Okeechobee and St. Lucie Estuary (Florida). Hampel JJ; McCarthy MJ; Aalto SL; Newell SE Front Microbiol; 2020; 11():1541. PubMed ID: 32754132 [TBL] [Abstract][Full Text] [Related]
5. Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales. Schaeffer BA; Urquhart E; Coffer M; Salls W; Stumpf RP; Loftin KA; Werdell PJ Ecol Indic; 2022 Jul; 140():1-14. PubMed ID: 36425672 [TBL] [Abstract][Full Text] [Related]
6. A method for examining temporal changes in cyanobacterial harmful algal bloom spatial extent using satellite remote sensing. Urquhart EA; Schaeffer BA; Stumpf RP; Loftin KA; Werdell PJ Harmful Algae; 2017 Jul; 67():144-152. PubMed ID: 28755717 [TBL] [Abstract][Full Text] [Related]
7. Characterization of turbidity in Florida's Lake Okeechobee and Caloosahatchee and St. Lucie estuaries using MODIS-Aqua measurements. Wang M; Nim CJ; Son S; Shi W Water Res; 2012 Oct; 46(16):5410-22. PubMed ID: 22858282 [TBL] [Abstract][Full Text] [Related]
9. Satellite monitoring of cyanobacterial harmful algal bloom frequency in recreational waters and drinking source waters. Clark JM; Schaeffer BA; Darling JA; Urquhart EA; Johnston JM; Ignatius A; Myer MH; Loftin KA; Werdell PJ; Stumpf RP Ecol Indic; 2017 Sep; 80():84-95. PubMed ID: 30245589 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of a satellite-based cyanobacteria bloom detection algorithm using field-measured microcystin data. Mishra S; Stumpf RP; Schaeffer B; Werdell PJ; Loftin KA; Meredith A Sci Total Environ; 2021 Jun; 774():145462. PubMed ID: 33609824 [TBL] [Abstract][Full Text] [Related]
11. Spatial and temporal characterization of cyanobacteria blooms in the Mississippi Sound and their relationship to the Bonnet Carré Spillway openings. Soto Ramos IM; Crooke B; Seegers B; Cetinić I; Cambazoglu MK; Armstrong B Harmful Algae; 2023 Aug; 127():102472. PubMed ID: 37544672 [TBL] [Abstract][Full Text] [Related]
12. Ground-based remote sensing provides alternative to satellites for monitoring cyanobacteria in small lakes. Cook KV; Beyer JE; Xiao X; Hambright KD Water Res; 2023 Aug; 242():120076. PubMed ID: 37352675 [TBL] [Abstract][Full Text] [Related]
13. Continuous and Synoptic Assessment of Indian Inland Waters for Harmful Algae Blooms. Maniyar CB; Kumar A; Mishra DR Harmful Algae; 2022 Jan; 111():102160. PubMed ID: 35016766 [TBL] [Abstract][Full Text] [Related]
14. Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales. Coffer MM; Schaeffer BA; Salls WB; Urquhart E; Loftin KA; Stumpf RP; Werdell PJ; Darling JA Ecol Indic; 2021 Sep; 128():1-107822. PubMed ID: 35558093 [TBL] [Abstract][Full Text] [Related]
15. Science meets policy: A framework for determining impairment designation criteria for large waterbodies affected by cyanobacterial harmful algal blooms. Davis TW; Stumpf R; Bullerjahn GS; McKay RML; Chaffin JD; Bridgeman TB; Winslow C Harmful Algae; 2019 Jan; 81():59-64. PubMed ID: 30638499 [TBL] [Abstract][Full Text] [Related]
16. Microbial diversity, genomics, and phage-host interactions of cyanobacterial harmful algal blooms. Krausfeldt LE; Shmakova E; Lee HW; Mazzei V; Loftin KA; Smith RP; Karwacki E; Fortman PE; Rosen BH; Urakawa H; Dadlani M; Colwell RR; Lopez JV mSystems; 2024 Jul; 9(7):e0070923. PubMed ID: 38856205 [TBL] [Abstract][Full Text] [Related]
17. Forecasting freshwater cyanobacterial harmful algal blooms for Sentinel-3 satellite resolved U.S. lakes and reservoirs. Schaeffer BA; Reynolds N; Ferriby H; Salls W; Smith D; Johnston JM; Myer M J Environ Manage; 2024 Jan; 349():119518. PubMed ID: 37944321 [TBL] [Abstract][Full Text] [Related]
18. Hurricanes, El Niño and harmful algal blooms in two sub-tropical Florida estuaries: Direct and indirect impacts. Phlips EJ; Badylak S; Nelson NG; Havens KE Sci Rep; 2020 Feb; 10(1):1910. PubMed ID: 32024897 [TBL] [Abstract][Full Text] [Related]
19. Septic systems contribute to nutrient pollution and harmful algal blooms in the St. Lucie Estuary, Southeast Florida, USA. Lapointe BE; Herren LW; Paule AL Harmful Algae; 2017 Dec; 70():1-22. PubMed ID: 29169565 [TBL] [Abstract][Full Text] [Related]
20. Sub-monthly time scale forecasting of harmful algal blooms intensity in Lake Erie using remote sensing and machine learning. Gupta A; Hantush MM; Govindaraju RS Sci Total Environ; 2023 Nov; 900():165781. PubMed ID: 37499836 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]