These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 38274265)

  • 1. Organic Semiconducting Polymers for Augmenting Biosynthesis and Bioconversion.
    Chen W; Lin H; Yu W; Huang Y; Lv F; Bai H; Wang S
    JACS Au; 2024 Jan; 4(1):3-19. PubMed ID: 38274265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Organic Semiconductor-Organism Interfaces for Augmenting Natural and Artificial Photosynthesis.
    Zhou X; Zeng Y; Lv F; Bai H; Wang S
    Acc Chem Res; 2022 Jan; 55(2):156-170. PubMed ID: 34963291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solar-Driven Producing of Value-Added Chemicals with Organic Semiconductor-Bacteria Biohybrid System.
    Yu W; Bai H; Zeng Y; Zhao H; Xia S; Huang Y; Lv F; Wang S
    Research (Wash D C); 2022; 2022():9834093. PubMed ID: 35402922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Semi-Artificial Photosynthesis of Ethylene by a Self-Assembled InP-Cyanobacterial Biohybrid System.
    Liang J; Chen Z; Yin P; Hu H; Cheng W; Shang J; Yang Y; Yuan Z; Pan J; Yin Y; Li W; Chen X; Gao X; Qiu B; Wang B
    ChemSusChem; 2023 Oct; 16(20):e202300773. PubMed ID: 37381086
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photosynthetic Polymer Dots-Bacteria Biohybrid System Based on Transmembrane Electron Transport for Fixing CO
    Yu W; Pavliuk MV; Liu A; Zeng Y; Xia S; Huang Y; Bai H; Lv F; Tian H; Wang S
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):2183-2191. PubMed ID: 36563111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solar fuels via artificial photosynthesis.
    Gust D; Moore TA; Moore AL
    Acc Chem Res; 2009 Dec; 42(12):1890-8. PubMed ID: 19902921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Material-Microbe Interfaces for Solar-Driven CO
    Sahoo PC; Pant D; Kumar M; Puri SK; Ramakumar SSV
    Trends Biotechnol; 2020 Nov; 38(11):1245-1261. PubMed ID: 32305152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Making the connections: physical and electric interactions in biohybrid photosynthetic systems.
    Yang Y; Liu LN; Tian H; Cooper AI; Sprick RS
    Energy Environ Sci; 2023 Oct; 16(10):4305-4319. PubMed ID: 38013927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomimetic and microbial approaches to solar fuel generation.
    Magnuson A; Anderlund M; Johansson O; Lindblad P; Lomoth R; Polivka T; Ott S; Stensjö K; Styring S; Sundström V; Hammarström L
    Acc Chem Res; 2009 Dec; 42(12):1899-909. PubMed ID: 19757805
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-Powered Biohybrid Systems Based on Organic Materials for Sustainable Biosynthesis.
    Chen W; Yu W; Wang Z; Gao Z; Zhang M; Zhu C; Lv F; Huang Y; Bai H; Wang S
    ACS Appl Mater Interfaces; 2023 Nov; ():. PubMed ID: 37924284
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Designing artificial photosynthetic devices using hybrid organic-inorganic modules based on polyoxometalates.
    Symes MD; Cogdell RJ; Cronin L
    Philos Trans A Math Phys Eng Sci; 2013 Aug; 371(1996):20110411. PubMed ID: 23816903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An insight into the bioelectrochemical photoreduction of CO
    Gupta P; Noori MT; Núñez AE; Verma N
    iScience; 2021 Apr; 24(4):102294. PubMed ID: 33851103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent Advances In Microbe-Photocatalyst Hybrid Systems for Production of Bulk Chemicals: A Review.
    Wu N; Xing M; Li Y; Xu Q; Li K
    Appl Biochem Biotechnol; 2023 Feb; 195(2):1574-1588. PubMed ID: 36346559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy conservation in photosynthetic microorganisms.
    Okada K; Fujiwara S; Tsuzuki M
    J Gen Appl Microbiol; 2020 Jun; 66(2):59-65. PubMed ID: 32336724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificial Photosynthesis: Current Advancements and Future Prospects.
    Machín A; Cotto M; Ducongé J; Márquez F
    Biomimetics (Basel); 2023 Jul; 8(3):. PubMed ID: 37504186
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photosynthetic biohybrid coculture for tandem and tunable CO
    Cestellos-Blanco S; Chan RR; Shen YX; Kim JM; Tacken TA; Ledbetter R; Yu S; Seefeldt LC; Yang P
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2122364119. PubMed ID: 35727971
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cyborgian Material Design for Solar Fuel Production: The Emerging Photosynthetic Biohybrid Systems.
    Sakimoto KK; Kornienko N; Yang P
    Acc Chem Res; 2017 Mar; 50(3):476-481. PubMed ID: 28945394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Catalysts for Artificial Photosynthesis: Merging Approaches from Molecular, Materials, and Biological Catalysis.
    Smith PT; Nichols EM; Cao Z; Chang CJ
    Acc Chem Res; 2020 Mar; 53(3):575-587. PubMed ID: 32124601
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biocatalytic conversion of sunlight and carbon dioxide to solar fuels and chemicals.
    Yau MCM; Hayes M; Kalathil S
    RSC Adv; 2022 Jun; 12(26):16396-16411. PubMed ID: 35754911
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.