These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38274269)

  • 1. Electromigration Forces on Atoms on Graphene Nanoribbons: The Role of Adsorbate-Surface Bonding.
    Leitherer S; Brandbyge M; Solomon GC
    JACS Au; 2024 Jan; 4(1):189-196. PubMed ID: 38274269
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resonantly Enhanced Electromigration Forces for Adsorbates on Graphene.
    Choi YW; Cohen ML
    Phys Rev Lett; 2022 Nov; 129(20):206801. PubMed ID: 36461986
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrogen Atoms on Zigzag Graphene Nanoribbons: Chemistry and Magnetism Meet at the Edge.
    Pizzochero M; Kaxiras E
    Nano Lett; 2022 Mar; 22(5):1922-1928. PubMed ID: 35167308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-Surface Synthesis and Characterization of 9-Atom Wide Armchair Graphene Nanoribbons.
    Talirz L; Söde H; Dumslaff T; Wang S; Sanchez-Valencia JR; Liu J; Shinde P; Pignedoli CA; Liang L; Meunier V; Plumb NC; Shi M; Feng X; Narita A; Müllen K; Fasel R; Ruffieux P
    ACS Nano; 2017 Feb; 11(2):1380-1388. PubMed ID: 28129507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface-catalyzed C-C covalent coupling strategies toward the synthesis of low-dimensional carbon-based nanostructures.
    Fan Q; Gottfried JM; Zhu J
    Acc Chem Res; 2015 Aug; 48(8):2484-94. PubMed ID: 26194462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine Learning for Shape Memory Graphene Nanoribbons and Applications in Biomedical Engineering.
    León C; Melnik R
    Bioengineering (Basel); 2022 Feb; 9(3):. PubMed ID: 35324779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorbate transport on graphene by electromigration.
    Solenov D; Velizhanin KA
    Phys Rev Lett; 2012 Aug; 109(9):095504. PubMed ID: 23002848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrostatic forces above graphene nanoribbons and edges interpreted as partly hydrogen-free.
    Schneider S; Hoffmann-Vogel R
    Nanoscale; 2020 Sep; 12(34):17895-17901. PubMed ID: 32844849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Chemist's View on Electronic and Steric Effects of Surface Ligands on Plasmonic Metal Nanostructures.
    Kim Y; Ji S; Nam JM
    Acc Chem Res; 2023 Aug; 56(16):2139-2150. PubMed ID: 37522593
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-Induced One-Dimensional Diffusion of Co Adatoms on Graphene Nanoribbons.
    Preis T; Vrbica S; Eroms J; Repp J; van Ruitenbeek JM
    Nano Lett; 2021 Oct; 21(20):8794-8799. PubMed ID: 34652923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Properties of halogen atoms for representing intermolecular electrostatic interactions related to halogen bonding and their substituent effects.
    Torii H; Yoshida M
    J Comput Chem; 2010 Jan; 31(1):107-16. PubMed ID: 19421995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability conditions of armchair graphene nanoribbon bipolarons.
    Abreu AVP; Ribeiro Junior LA; Silva GG; Pereira Junior ML; Enders BG; Fonseca ALA; E Silva GM
    J Mol Model; 2019 Jul; 25(8):245. PubMed ID: 31342176
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of covalent chemistry on the electronic structure and properties of carbon nanotubes and graphene.
    Bekyarova E; Sarkar S; Wang F; Itkis ME; Kalinina I; Tian X; Haddon RC
    Acc Chem Res; 2013 Jan; 46(1):65-76. PubMed ID: 23116475
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate prediction of the electronic properties of low-dimensional graphene derivatives using a screened hybrid density functional.
    Barone V; Hod O; Peralta JE; Scuseria GE
    Acc Chem Res; 2011 Apr; 44(4):269-79. PubMed ID: 21388164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomistic modeling of metal surfaces under electric fields: direct coupling of electric fields to a molecular dynamics algorithm.
    Djurabekova F; Parviainen S; Pohjonen A; Nordlund K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 2):026704. PubMed ID: 21405927
    [TBL] [Abstract][Full Text] [Related]  

  • 18. First-principles investigation on the bonding mechanisms of two-dimensional carbon materials on the transition metals surfaces.
    Zhang X; Sun S; Wang S
    RSC Adv; 2020 Nov; 10(71):43412-43419. PubMed ID: 35519694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tuning the Electronic and Magnetic Properties of Graphene Flake Embedded in Boron Nitride Nanoribbons with Transverse Electric Fields: First-Principles Calculations.
    Guan Z; Ni S; Hu S
    ACS Omega; 2019 Jun; 4(6):10293-10300. PubMed ID: 31460121
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic and transport properties and physical field coupling effects for net-Y nanoribbons.
    Hu JK; Zhang ZH; Fan ZQ; Zhou RL
    Nanotechnology; 2019 Nov; 30(48):485703. PubMed ID: 31426048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.