These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38274776)

  • 1. Can Training Make Three Arms Better Than Two Heads for Trimanual Coordination?
    Huang Y; Eden J; Ivanova E; Burdet E
    IEEE Open J Eng Med Biol; 2023; 4():148-155. PubMed ID: 38274776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human Performance of Three Hands in Unimanual, Bimanual and Trimanual Tasks.
    Huang Y; Eden J; Ivanova E; Burdet E
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1493-1497. PubMed ID: 36086495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redundancy Resolution in Trimanual vs. Bimanual Tracking Tasks.
    Sanmartin-Senent A; Pena-Perez N; Burdet E; Eden J
    Annu Int Conf IEEE Eng Med Biol Soc; 2023 Jul; 2023():1-5. PubMed ID: 38083745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human performance in three-hands tasks.
    Noccaro A; Eden J; Di Pino G; Formica D; Burdet E
    Sci Rep; 2021 May; 11(1):9511. PubMed ID: 33947906
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger.
    Hussain I; Spagnoletti G; Salvietti G; Prattichizzo D
    Front Neurorobot; 2016; 10():18. PubMed ID: 27891088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Playing the piano with a robotic third thumb: assessing constraints of human augmentation.
    Shafti A; Haar S; Mio R; Guilleminot P; Faisal AA
    Sci Rep; 2021 Nov; 11(1):21375. PubMed ID: 34725355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of contactless human-machine interface for robotic surgical training.
    Despinoy F; Zemiti N; Forestier G; Sánchez A; Jannin P; Poignet P
    Int J Comput Assist Radiol Surg; 2018 Jan; 13(1):13-24. PubMed ID: 28914409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association of Individual Characteristics with Teleoperation Performance.
    Pan D; Zhang Y; Li Z; Tian Z
    Aerosp Med Hum Perform; 2016 Sep; 87(9):772-80. PubMed ID: 27634696
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Task-Level Authoring for Remote Robot Teleoperation.
    Senft E; Hagenow M; Welsh K; Radwin R; Zinn M; Gleicher M; Mutlu B
    Front Robot AI; 2021; 8():707149. PubMed ID: 34646866
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Three-Limb Teleoperated Robotic System with Foot Control for Flexible Endoscopic Surgery.
    Huang Y; Lai W; Cao L; Liu J; Li X; Burdet E; Phee SJ
    Ann Biomed Eng; 2021 Sep; 49(9):2282-2296. PubMed ID: 33834351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Supernumerary Soft Robotic Limb for Reducing Hand-Arm Vibration Syndromes Risks.
    Ciullo AS; Catalano MG; Bicchi A; Ajoudani A
    Front Robot AI; 2021; 8():650613. PubMed ID: 34490355
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A system for bedside assistance that integrates a robotic bed and a mobile manipulator.
    Kapusta AS; Grice PM; Clever HM; Chitalia Y; Park D; Kemp CC
    PLoS One; 2019; 14(10):e0221854. PubMed ID: 31618205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMI control of a third arm for multitasking.
    Penaloza CI; Nishio S
    Sci Robot; 2018 Jul; 3(20):. PubMed ID: 33141729
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cogmed Training Does Not Generalize to Real-World Benefits for Adult Hearing Aid Users: Results of a Blinded, Active-Controlled Randomized Trial.
    Henshaw H; Heinrich A; Tittle A; Ferguson M
    Ear Hear; 2022; 43(3):741-763. PubMed ID: 34524150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using a robotic teleoperation system for haptic exploration.
    Puyo LMB; Capel HM; Phelan SK; Wiebe SA; Adams KD
    J Rehabil Assist Technol Eng; 2021; 8():2055668320969308. PubMed ID: 33912352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrinsic somatosensory feedback supports motor control and learning to operate artificial body parts.
    Amoruso E; Dowdall L; Kollamkulam MT; Ukaegbu O; Kieliba P; Ng T; Dempsey-Jones H; Clode D; Makin TR
    J Neural Eng; 2022 Jan; 19(1):. PubMed ID: 34983040
    [No Abstract]   [Full Text] [Related]  

  • 18. Human-machine-human interaction in motor control and rehabilitation: a review.
    Küçüktabak EB; Kim SJ; Wen Y; Lynch K; Pons JL
    J Neuroeng Rehabil; 2021 Dec; 18(1):183. PubMed ID: 34961530
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on augmented reality for robotic surgery bedside assistants.
    Stewart CL; Fong A; Payyavula G; DiMaio S; Lafaro K; Tallmon K; Wren S; Sorger J; Fong Y
    J Robot Surg; 2022 Oct; 16(5):1019-1026. PubMed ID: 34762249
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EMG-driven shared human-robot compliant control for in-hand object manipulation in hand prostheses.
    Khadivar F; Mendez V; Correia C; Batzianoulis I; Billard A; Micera S
    J Neural Eng; 2022 Dec; 19(6):. PubMed ID: 36384035
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.