These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38274783)
1. Neuromechanical Adaptation to Walking With Electromechanical Ankle Exoskeletons Under Proportional Myoelectric Control. Hybart RL; Ferris DP IEEE Open J Eng Med Biol; 2023; 4():119-128. PubMed ID: 38274783 [TBL] [Abstract][Full Text] [Related]
2. Learning to walk with an adaptive gain proportional myoelectric controller for a robotic ankle exoskeleton. Koller JR; Jacobs DA; Ferris DP; Remy CD J Neuroeng Rehabil; 2015 Nov; 12():97. PubMed ID: 26536868 [TBL] [Abstract][Full Text] [Related]
3. Preliminary Validation of Proportional Myoelectric Control of A Commercially Available Robotic Ankle Exoskeleton. Hybart RL; Ferris DP IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-5. PubMed ID: 36176129 [TBL] [Abstract][Full Text] [Related]
4. Biomechanics and energetics of walking in powered ankle exoskeletons using myoelectric control versus mechanically intrinsic control. Koller JR; Remy CD; Ferris DP J Neuroeng Rehabil; 2018 May; 15(1):42. PubMed ID: 29801451 [TBL] [Abstract][Full Text] [Related]
5. Metabolic cost of walking with electromechanical ankle exoskeletons under proportional myoelectric control on a treadmill and outdoors. Hybart R; Villancio-Wolter KS; Ferris DP PeerJ; 2023; 11():e15775. PubMed ID: 37525661 [TBL] [Abstract][Full Text] [Related]
6. Mechanics and energetics of level walking with powered ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2008 May; 211(Pt 9):1402-13. PubMed ID: 18424674 [TBL] [Abstract][Full Text] [Related]
7. Gait variability of outdoor vs treadmill walking with bilateral robotic ankle exoskeletons under proportional myoelectric control. Hybart R; Ferris D PLoS One; 2023; 18(11):e0294241. PubMed ID: 37956157 [TBL] [Abstract][Full Text] [Related]
8. Short-term locomotor adaptation to a robotic ankle exoskeleton does not alter soleus Hoffmann reflex amplitude. Kao PC; Lewis CL; Ferris DP J Neuroeng Rehabil; 2010 Jul; 7():33. PubMed ID: 20659331 [TBL] [Abstract][Full Text] [Related]
9. Powered ankle exoskeletons reveal the metabolic cost of plantar flexor mechanical work during walking with longer steps at constant step frequency. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):21-31. PubMed ID: 19088207 [TBL] [Abstract][Full Text] [Related]
10. Mechanics and energetics of incline walking with robotic ankle exoskeletons. Sawicki GS; Ferris DP J Exp Biol; 2009 Jan; 212(Pt 1):32-41. PubMed ID: 19088208 [TBL] [Abstract][Full Text] [Related]
11. Medial gastrocnemius myoelectric control of a robotic ankle exoskeleton. Kinnaird CR; Ferris DP IEEE Trans Neural Syst Rehabil Eng; 2009 Feb; 17(1):31-7. PubMed ID: 19211321 [TBL] [Abstract][Full Text] [Related]
12. Motor modules during adaptation to walking in a powered ankle exoskeleton. Jacobs DA; Koller JR; Steele KM; Ferris DP J Neuroeng Rehabil; 2018 Jan; 15(1):2. PubMed ID: 29298705 [TBL] [Abstract][Full Text] [Related]
13. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control. McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269 [TBL] [Abstract][Full Text] [Related]
14. A Biomechanical Comparison of Proportional Electromyography Control to Biological Torque Control Using a Powered Hip Exoskeleton. Young AJ; Gannon H; Ferris DP Front Bioeng Biotechnol; 2017; 5():37. PubMed ID: 28713810 [TBL] [Abstract][Full Text] [Related]
15. Effectiveness of robotic exoskeletons for improving gait in children with cerebral palsy: A systematic review. Hunt M; Everaert L; Brown M; Muraru L; Hatzidimitriadou E; Desloovere K Gait Posture; 2022 Oct; 98():343-354. PubMed ID: 36306544 [TBL] [Abstract][Full Text] [Related]
16. Robotic lower limb exoskeletons using proportional myoelectric control. Ferris DP; Lewis CL Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2119-24. PubMed ID: 19964579 [TBL] [Abstract][Full Text] [Related]
17. Impact of elastic ankle exoskeleton stiffness on neuromechanics and energetics of human walking across multiple speeds. Nuckols RW; Sawicki GS J Neuroeng Rehabil; 2020 Jun; 17(1):75. PubMed ID: 32539840 [TBL] [Abstract][Full Text] [Related]
18. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion. Jackson RW; Collins SH IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120 [TBL] [Abstract][Full Text] [Related]
19. Invariant ankle moment patterns when walking with and without a robotic ankle exoskeleton. Kao PC; Lewis CL; Ferris DP J Biomech; 2010 Jan; 43(2):203-9. PubMed ID: 19878952 [TBL] [Abstract][Full Text] [Related]
20. Neuromechanics and Energetics of Walking With an Ankle Exoskeleton Using Neuromuscular-Model Based Control: A Parameter Study. Shafer BA; Philius SA; Nuckols RW; McCall J; Young AJ; Sawicki GS Front Bioeng Biotechnol; 2021; 9():615358. PubMed ID: 33954159 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]