BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 38274829)

  • 21. Aspirin plus sorafenib potentiates cisplatin cytotoxicity in resistant head and neck cancer cells through xCT inhibition.
    Roh JL; Kim EH; Jang H; Shin D
    Free Radic Biol Med; 2017 Mar; 104():1-9. PubMed ID: 28057599
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of neurofilament light polypeptide in head and neck cancer chemoresistance.
    Chen B; Chen J; House MG; Cullen KJ; Nephew KP; Guo Z
    Mol Cancer Res; 2012 Mar; 10(3):305-15. PubMed ID: 22246235
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of Glucosylceramide Synthase Sensitizes Head and Neck Cancer to Cisplatin.
    Roh JL; Kim EH; Park JY; Kim JW
    Mol Cancer Ther; 2015 Aug; 14(8):1907-15. PubMed ID: 26063766
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Akt1 and Jak1 siRNA based silencing effects on the proliferation and apoptosis in head and neck squamous cell carcinoma.
    Vakili Saatloo M; Aghbali AA; Koohsoltani M; Yari Khosroushahi A
    Gene; 2019 Sep; 714():143997. PubMed ID: 31348981
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Overcoming cisplatin resistance in non-small cell lung cancer with Mad2 silencing siRNA delivered systemically using EGFR-targeted chitosan nanoparticles.
    Nascimento AV; Singh A; Bousbaa H; Ferreira D; Sarmento B; Amiji MM
    Acta Biomater; 2017 Jan; 47():71-80. PubMed ID: 27697601
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Prognostic Significance of
    Hu J; Luo H; Xu Y; Luo G; Xu S; Zhu J; Song D; Sun Z; Kuang Y
    Cancer Invest; 2019; 37(4-5):199-208. PubMed ID: 31181967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. RITA plus 3-MA overcomes chemoresistance of head and neck cancer cells via dual inhibition of autophagy and antioxidant systems.
    Shin D; Kim EH; Lee J; Roh JL
    Redox Biol; 2017 Oct; 13():219-227. PubMed ID: 28582730
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting EIF3C to suppress the development and progression of nasopharyngeal carcinoma.
    Zhao Q; Luo X; Li H; Bai Y; Chen Q; Yang M; Pei B; Xu C; Han S
    Front Bioeng Biotechnol; 2022; 10():994628. PubMed ID: 36147539
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.
    Varshosaz J; Farzan M
    World J Gastroenterol; 2015 Nov; 21(42):12022-41. PubMed ID: 26576089
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Role of eIF3C Overexpression in Predicting Prognosis of Intrahepatic Cholangiocarcinoma.
    Xu YP; Dong ZN; Zhou YQ; Zhao YJ; Zhao Y; Wang F; Huang XY; Guo CY
    Dig Dis Sci; 2022 Feb; 67(2):559-568. PubMed ID: 33576946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activation of mitochondrial oxidation by PDK2 inhibition reverses cisplatin resistance in head and neck cancer.
    Roh JL; Park JY; Kim EH; Jang HJ; Kwon M
    Cancer Lett; 2016 Feb; 371(1):20-9. PubMed ID: 26607904
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photodynamic therapy with 5-aminolevulinic acid (ALA) impairs tumor initiating and chemo-resistance property in head and neck cancer-derived cancer stem cells.
    Yu CH; Yu CC
    PLoS One; 2014; 9(1):e87129. PubMed ID: 24475244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. EIF3C-enhanced exosome secretion promotes angiogenesis and tumorigenesis of human hepatocellular carcinoma.
    Lee HY; Chen CK; Ho CM; Lee SS; Chang CY; Chen KJ; Jou YS
    Oncotarget; 2018 Mar; 9(17):13193-13205. PubMed ID: 29568350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. circPDE5A regulates prostate cancer metastasis via controlling WTAP-dependent N6-methyladenisine methylation of EIF3C mRNA.
    Ding L; Wang R; Zheng Q; Shen D; Wang H; Lu Z; Luo W; Xie H; Ren L; Jiang M; Yu C; Zhou Z; Lin Y; Lu H; Xue D; Su W; Xia L; Neuhaus J; Cheng S; Li G
    J Exp Clin Cancer Res; 2022 Jun; 41(1):187. PubMed ID: 35650605
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Therapeutic Gene Silencing Using Targeted Lipid Nanoparticles in Metastatic Ovarian Cancer.
    Singh MS; Ramishetti S; Landesman-Milo D; Goldsmith M; Chatterjee S; Palakuri R; Peer D
    Small; 2021 May; 17(19):e2100287. PubMed ID: 33825318
    [TBL] [Abstract][Full Text] [Related]  

  • 36. PEG-coated nanoparticles detachable in acidic microenvironments for the tumor-directed delivery of chemo- and gene therapies for head and neck cancer.
    Lo YL; Chang CH; Wang CS; Yang MH; Lin AM; Hong CJ; Tseng WH
    Theranostics; 2020; 10(15):6695-6714. PubMed ID: 32550898
    [No Abstract]   [Full Text] [Related]  

  • 37. Novel approaches in cancer treatment: preclinical and clinical development of small non-coding RNA therapeutics.
    Cuciniello R; Filosa S; Crispi S
    J Exp Clin Cancer Res; 2021 Dec; 40(1):383. PubMed ID: 34863235
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Schwannomin inhibits tumorigenesis through direct interaction with the eukaryotic initiation factor subunit c (eIF3c).
    Scoles DR; Yong WH; Qin Y; Wawrowsky K; Pulst SM
    Hum Mol Genet; 2006 Apr; 15(7):1059-70. PubMed ID: 16497727
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The m6A reader YTHDF1 promotes ovarian cancer progression via augmenting EIF3C translation.
    Liu T; Wei Q; Jin J; Luo Q; Liu Y; Yang Y; Cheng C; Li L; Pi J; Si Y; Xiao H; Li L; Rao S; Wang F; Yu J; Yu J; Zou D; Yi P
    Nucleic Acids Res; 2020 Apr; 48(7):3816-3831. PubMed ID: 31996915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lipid Nanoparticle Technology for Clinical Translation of siRNA Therapeutics.
    Kulkarni JA; Witzigmann D; Chen S; Cullis PR; van der Meel R
    Acc Chem Res; 2019 Sep; 52(9):2435-2444. PubMed ID: 31397996
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.