These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38275006)

  • 1. Synthesis and protection: a controllable electrochemical approach to polypyrrole-coated copper azide with superior safety for MEMS.
    Bao M; Yu C; Yang G; Chen J; Cheng H; Xu J; Shi W; Song C; Lei X; Han Z; Zhang W
    Lab Chip; 2024 Feb; 24(4):719-727. PubMed ID: 38275006
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Copper Azide Nanoparticle-Encapsulating MOF-Derived Porous Carbon: Electrochemical Preparation for High-Performance Primary Explosive Film.
    Yu C; Zhang W; Xian M; Wang J; Chen J; Chen Y; Shi W; Yang G; Ye J; Ma K; Zhu J
    Small; 2022 Apr; 18(13):e2107364. PubMed ID: 35143716
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energetic Films Realized by Encapsulating Copper Azide in Silicon-based Carbon Nanotube Arrays with Higher Electrostatic Safety.
    Liu X; Hu Y; Wei H; Chen B; Ye Y; Shen R
    Micromachines (Basel); 2020 Jun; 11(6):. PubMed ID: 32517195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molding fabrication of copper azide/porous graphene with high electrostatic safety by self-assembly of graphene oxide.
    Yan Z; Yang L; Han JM; Li H
    Nanotechnology; 2021 Jun; 32(38):. PubMed ID: 34185025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis of Energetic Nanoparticles of Copper Azide with High Initiation Ability for Micro-Initiator Applications Using Layered Copper Hydroxide.
    Yan Z; Yang L; Tong W; Han JM
    Inorg Chem; 2022 Jun; 61(24):9096-9103. PubMed ID: 35670700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication of Copper Azide Film through Metal-Organic Framework for Micro-Initiator Applications.
    Wang Q; Han J; Zhang Y; Yan Z; Velasco E; Yang L; Wang B; Zang SQ
    ACS Appl Mater Interfaces; 2019 Feb; 11(8):8081-8088. PubMed ID: 30717597
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Liu W; Feng Y; Yao Y; Liang Z; Xiao F; Ma Z
    Lab Chip; 2023 Oct; 23(20):4493-4503. PubMed ID: 37753862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Situ Electrochemical Construction of CuN
    Yu C; Gu B; Bao M; Chen J; Shi W; Ye J; Zhang W
    Inorg Chem; 2024 Jan; 63(3):1642-1651. PubMed ID: 38198689
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new strategy to prepare high-performance copper azide film for micro-initiator.
    Wang S; Yang L; Ren X; Tong W; Li W; Li H; Huo J
    Nanotechnology; 2023 Aug; 34(45):. PubMed ID: 37541220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical study of the reduction in sensitivity of copper azide following encapsulation in carbon nanotubes.
    Zhang GY; Han JM; Yang L; Zhang TL
    J Mol Model; 2020 Apr; 26(4):90. PubMed ID: 32240386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-Based/Polypyrrole Carbon Nanofiber Electrode With Enhanced Electrochemical Properties by Electrospun Method.
    Hu ZR; Li DD; Kim TH; Kim MS; Xu T; Ma MG; Choi SE; Si C
    Front Chem; 2022; 10():841956. PubMed ID: 35211457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Synthesized MEMS Compatible Energetic Arrays Based on Energetic Coordination Polymer and Nano-Al with Tunable Properties.
    Ma X; Cao K; Huang X; Yang S; Ye Y; Shen R; Yang G; Zhang K
    ACS Appl Mater Interfaces; 2020 Jul; 12(27):30740-30749. PubMed ID: 32517465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale Homogeneous Energetic Copper Azides@Porous Carbon Hybrid with Reduced Sensitivity and High Ignition Ability.
    Xu R; Yan Z; Yang L; Wang Q; Tong W; Song N; Han JM; Zhao Y
    ACS Appl Mater Interfaces; 2018 Jul; 10(26):22545-22551. PubMed ID: 29883098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of hierarchical polypyrrole coated copper-catecholate grown on poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) fibers for high-performance supercapacitors.
    Li X; Liu Y; Gao M; Cai K
    J Colloid Interface Sci; 2022 Dec; 627():142-150. PubMed ID: 35842964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A three-dimensional energetic coordination compound (BLG-1) with excellent initiating ability for lead-free primary explosives.
    Lei G; Cheng W; Lu Z; Zhang T; Li Z; Zhang J
    Mater Horiz; 2023 Nov; 10(12):5775-5781. PubMed ID: 37812209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of a nanoscale homogeneous energetic lead azides@porous carbon hybrid with high ignition ability by
    Yan Z; Yang L; Han JM; Song N; Liu J
    RSC Adv; 2020 Apr; 10(24):14347-14352. PubMed ID: 35498503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Valence-Oriented Electrosynthesis Strategies of Cu-Based 5-Nitrotetrazolate for Environmentally Acceptable Primary Explosives.
    Yu C; Gu B; Wang J; Chen J; Zhang W; Shi W; Yang G; Lei X; Zhu J
    Inorg Chem; 2022 Dec; 61(48):19379-19387. PubMed ID: 36394920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An energetic composite formed of wrinkled rGO sheets wrapped around copper azide nanowires with higher electrostatic safety as a green primary explosive.
    Liu X; Hu Y; Li T; Ye Y; Shen R
    RSC Adv; 2020 Aug; 10(51):30700-30706. PubMed ID: 35516034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016).
    Wang Q; Feng X; Wang S; Song N; Chen Y; Tong W; Han Y; Yang L; Wang B
    Adv Mater; 2016 Jul; 28(28):5766. PubMed ID: 27442967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polypyrrole-coated copper@graphene core-shell nanoparticles for supercapacitor application.
    Ho HY; Chu HI; Huang YJ; Tsai DS; Lee CP
    Nanotechnology; 2023 Jan; 34(12):. PubMed ID: 36542854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.