These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 38275007)

  • 1. Monolithic 2D Perovskites Enabled Artificial Photonic Synapses for Neuromorphic Vision Sensors.
    Wang Y; Zha Y; Bao C; Hu F; Di Y; Liu C; Xing F; Xu X; Wen X; Gan Z; Jia B
    Adv Mater; 2024 May; 36(18):e2311524. PubMed ID: 38275007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photonic Synapses Based on Inorganic Perovskite Quantum Dots for Neuromorphic Computing.
    Wang Y; Lv Z; Chen J; Wang Z; Zhou Y; Zhou L; Chen X; Han ST
    Adv Mater; 2018 Sep; 30(38):e1802883. PubMed ID: 30063261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-Dimensional Perovskite-Gated AlGaN/GaN High-Electron-Mobility-Transistor for Neuromorphic Vision Sensor.
    Hong X; Huang Y; Tian Q; Zhang S; Liu C; Wang L; Zhang K; Sun J; Liao L; Zou X
    Adv Sci (Weinh); 2022 Sep; 9(27):e2202019. PubMed ID: 35869612
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Neuron and Synapse Devices Based on 2D Materials.
    Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J
    Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-low-energy three-dimensional oxide-based electronic synapses for implementation of robust high-accuracy neuromorphic computation systems.
    Gao B; Bi Y; Chen HY; Liu R; Huang P; Chen B; Liu L; Liu X; Yu S; Wong HS; Kang J
    ACS Nano; 2014 Jul; 8(7):6998-7004. PubMed ID: 24884237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A low energy oxide-based electronic synaptic device for neuromorphic visual systems with tolerance to device variation.
    Yu S; Gao B; Fang Z; Yu H; Kang J; Wong HS
    Adv Mater; 2013 Mar; 25(12):1774-9. PubMed ID: 23355110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid neuromorphic hardware with sparing 2D synapse and CMOS neuron for character recognition.
    Xue S; Wang S; Wu T; Di Z; Xu N; Sun Y; Zeng C; Ma S; Zhou P
    Sci Bull (Beijing); 2023 Oct; 68(20):2336-2343. PubMed ID: 37714804
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accelerated Learning in Wide-Band-Gap AlN Artificial Photonic Synaptic Devices: Impact on Suppressed Shallow Trap Level.
    Lee M; Nam S; Cho B; Kwon O; Lee HU; Hahm MG; Kim UJ; Son H
    Nano Lett; 2021 Sep; 21(18):7879-7886. PubMed ID: 34328342
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artificial Visual Synaptic Architecture with High-Linearity Light-Modulated Weight for Optoelectronic Neuromorphic Computing.
    Liu Y; Wang B; Wu L; Huang L; Lin L; Xiang L; Liu D; Zhang S; Zhu C; Tao Y; Li D; Pan A
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37885218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optoelectronic resistive random access memory for neuromorphic vision sensors.
    Zhou F; Zhou Z; Chen J; Choy TH; Wang J; Zhang N; Lin Z; Yu S; Kang J; Wong HP; Chai Y
    Nat Nanotechnol; 2019 Aug; 14(8):776-782. PubMed ID: 31308498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromorphic learning and recognition in WO
    Mohapatra RAB; Mhaskar CM; Sahu MC; Sahoo S; Roy Chaudhuri A
    Nanotechnology; 2024 Aug; 35(45):. PubMed ID: 39127053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nearly Panoramic Neuromorphic Vision with Transparent Photosynapses.
    Dong X; Chen C; Pan K; Li Y; Zhang Z; He Z; Liu B; Zhou Z; Wu Y; Zhang D; Sun H; Qian X; Xu M; Huang W; Liu J
    Adv Sci (Weinh); 2023 Oct; 10(30):e2303944. PubMed ID: 37635198
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Introducing Chiro-optical Activities in Photonic Synapses for Neuromorphic Computing and In-Memory Logic Operations.
    Dan S; Paramanik S; Pal AJ
    ACS Nano; 2024 Jun; 18(22):14457-14468. PubMed ID: 38764188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flexible Artificial Optoelectronic Synapse based on Lead-Free Metal Halide Nanocrystals for Neuromorphic Computing and Color Recognition.
    Li Y; Wang J; Yang Q; Shen G
    Adv Sci (Weinh); 2022 Aug; 9(22):e2202123. PubMed ID: 35661449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inorganic Perovskite Quantum Dot-Mediated Photonic Multimodal Synapse.
    Gupta GK; Kim IJ; Park Y; Kim MK; Lee JS
    ACS Appl Mater Interfaces; 2023 Apr; 15(14):18055-18064. PubMed ID: 37000192
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inhibitory artificial synapses based on photoelectric co-modulation of graphene/WSe
    Zhou Y; Zhang P; Li J; Mao X
    Nanotechnology; 2023 Oct; 34(50):. PubMed ID: 37689056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synapse-Mimetic Hardware-Implemented Resistive Random-Access Memory for Artificial Neural Network.
    Seok H; Son S; Jathar SB; Lee J; Kim T
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991829
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electret-Based Organic Synaptic Transistor for Neuromorphic Computing.
    Yu R; Li E; Wu X; Yan Y; He W; He L; Chen J; Chen H; Guo T
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15446-15455. PubMed ID: 32153175
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Sensory Adaptation and Neuromorphic Phototransistors Based on CsPb(Br
    Hong S; Choi SH; Park J; Yoo H; Oh JY; Hwang E; Yoon DH; Kim S
    ACS Nano; 2020 Aug; 14(8):9796-9806. PubMed ID: 32628447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics.
    Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW
    Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.