BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 38275154)

  • 1. Nanotechnology-based bone regeneration in orthopedics: a review of recent trends.
    Liang W; Zhou C; Bai J; Zhang H; Long H; Jiang B; Liu L; Xia L; Jiang C; Zhang H; Zhao J
    Nanomedicine (Lond); 2024 Feb; 19(3):255-275. PubMed ID: 38275154
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration.
    Bharadwaz A; Jayasuriya AC
    Mater Sci Eng C Mater Biol Appl; 2020 May; 110():110698. PubMed ID: 32204012
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Review of emerging nanotechnology in bone regeneration: progress, challenges, and perspectives.
    Hajiali H; Ouyang L; Llopis-Hernandez V; Dobre O; Rose FRAJ
    Nanoscale; 2021 Jun; 13(23):10266-10280. PubMed ID: 34085085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of nanomaterials for bone repair and regeneration.
    McMahon RE; Wang L; Skoracki R; Mathur AB
    J Biomed Mater Res B Appl Biomater; 2013 Feb; 101(2):387-97. PubMed ID: 23281143
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Smart biomaterials and their potential applications in tissue engineering.
    Khan HM; Liao X; Sheikh BA; Wang Y; Su Z; Guo C; Li Z; Zhou C; Cen Y; Kong Q
    J Mater Chem B; 2022 Sep; 10(36):6859-6895. PubMed ID: 36069198
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polydopamine-Templated Hydroxyapatite Reinforced Polycaprolactone Composite Nanofibers with Enhanced Cytocompatibility and Osteogenesis for Bone Tissue Engineering.
    Gao X; Song J; Ji P; Zhang X; Li X; Xu X; Wang M; Zhang S; Deng Y; Deng F; Wei S
    ACS Appl Mater Interfaces; 2016 Feb; 8(5):3499-515. PubMed ID: 26756224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review of fibrin and fibrin composites for bone tissue engineering.
    Noori A; Ashrafi SJ; Vaez-Ghaemi R; Hatamian-Zaremi A; Webster TJ
    Int J Nanomedicine; 2017; 12():4937-4961. PubMed ID: 28761338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The usage of composite nanomaterials in biomedical engineering applications.
    Akgöl S; Ulucan-Karnak F; Kuru Cİ; Kuşat K
    Biotechnol Bioeng; 2021 Aug; 118(8):2906-2922. PubMed ID: 34050923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Based Nanocomposites as Promising Options for Hard Tissue Regeneration.
    Shin YC; Song SJ; Jeong SJ; Kim B; Kwon IK; Hong SW; Oh JW; Han DW
    Adv Exp Med Biol; 2018; 1078():103-117. PubMed ID: 30357620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions.
    Shao R; Dong Y; Zhang S; Wu X; Huang X; Sun B; Zeng B; Xu F; Liang W
    Biotechnol J; 2022 Apr; 17(4):e2100074. PubMed ID: 35073451
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanotechnology-Boosted Biomaterials for Osteoarthritis Treatment: Current Status and Future Perspectives.
    Liu L; Tang H; Wang Y
    Int J Nanomedicine; 2023; 18():4969-4983. PubMed ID: 37693887
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advances in Nanotechnology for the Treatment of Osteoporosis.
    Barry M; Pearce H; Cross L; Tatullo M; Gaharwar AK
    Curr Osteoporos Rep; 2016 Jun; 14(3):87-94. PubMed ID: 27048473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An update on the Application of Nanotechnology in Bone Tissue Engineering.
    Griffin MF; Kalaskar DM; Seifalian A; Butler PE
    Open Orthop J; 2016; 10():836-848. PubMed ID: 28217209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanomaterials for bone tissue regeneration: updates and future perspectives.
    J Hill M; Qi B; Bayaniahangar R; Araban V; Bakhtiary Z; Doschak MR; Goh BC; Shokouhimehr M; Vali H; Presley JF; Zadpoor AA; Harris MB; Abadi PP; Mahmoudi M
    Nanomedicine (Lond); 2019 Nov; 14(22):2987-3006. PubMed ID: 31779522
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent Developments in Polymer Nanocomposites for Bone Regeneration.
    Abbas M; Alqahtani MS; Alhifzi R
    Int J Mol Sci; 2023 Feb; 24(4):. PubMed ID: 36834724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Promising trends of bioceramics in the biomaterials field.
    Arcos D; Izquierdo-Barba I; Vallet-Regí M
    J Mater Sci Mater Med; 2009 Feb; 20(2):447-55. PubMed ID: 18987955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bone tissue engineering using silica-based mesoporous nanobiomaterials:Recent progress.
    Shadjou N; Hasanzadeh M
    Mater Sci Eng C Mater Biol Appl; 2015 Oct; 55():401-9. PubMed ID: 26117771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Additively manufactured Bi-functionalized bioceramics for reconstruction of bone tumor defects.
    Belluomo R; Khodaei A; Amin Yavari S
    Acta Biomater; 2023 Jan; 156():234-249. PubMed ID: 36028198
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application of nanomaterials in controlled drug delivery for bone regeneration.
    Shi S; Jiang W; Zhao T; Aifantis KE; Wang H; Lin L; Fan Y; Feng Q; Cui FZ; Li X
    J Biomed Mater Res A; 2015 Dec; 103(12):3978-92. PubMed ID: 26061384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.