These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 38275462)
1. An Automatic Needle Puncture Path-Planning Method for Thermal Ablation of Lung Tumors. Wang Z; Wu W; Wu S; Zhou Z; Zhang H Diagnostics (Basel); 2024 Jan; 14(2):. PubMed ID: 38275462 [TBL] [Abstract][Full Text] [Related]
2. Multi-stage puncture path planning algorithm of ablation needles for percutaneous radiofrequency ablation of liver tumors. Luo M; Jiang H; Shi T Comput Biol Med; 2022 Jun; 145():105506. PubMed ID: 35429832 [TBL] [Abstract][Full Text] [Related]
3. [A method of lung puncture path planning based on multi-level constraint]. Sun F; Pei H; Yang Y; Fan Q; Li X Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2022 Jun; 39(3):462-470. PubMed ID: 35788515 [TBL] [Abstract][Full Text] [Related]
4. Design of Path-Planning System for Interventional Thermal Ablation of Liver Tumors Based on CT Images. Song Z; Ding F; Wu W; Zhou Z; Wu S Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894328 [TBL] [Abstract][Full Text] [Related]
5. Method for puncture trajectory planning in liver tumors thermal ablation based on NSGA-III. Dong Q; Cao M; Gu F; Gong W; Cai Q Technol Health Care; 2022; 30(5):1243-1256. PubMed ID: 35342068 [TBL] [Abstract][Full Text] [Related]
6. High-security automatic path planning of radiofrequency ablation for liver tumors. Li J; Gao H; Shen N; Wu D; Feng L; Hu P Comput Methods Programs Biomed; 2023 Dec; 242():107769. PubMed ID: 37714019 [TBL] [Abstract][Full Text] [Related]
7. Path planning algorithm for percutaneous puncture lung mass biopsy procedure based on the multi-objective constraints and fuzzy optimization. Zhang J; Zhang J; Han P; Chen XZ; Zhang Y; Li W; Qin J; He L Phys Med Biol; 2024 Apr; 69(9):. PubMed ID: 38394681 [No Abstract] [Full Text] [Related]
8. A lung biopsy path planning algorithm based on the double spherical constraint Pareto and indicators' importance-correlation degree. Yang H; Zhang Y; Gong Y; Zhang J; He L; Zhong J; Tang L Comput Med Imaging Graph; 2024 Oct; 117():102426. PubMed ID: 39288579 [TBL] [Abstract][Full Text] [Related]
9. Multi-stage automatic and rapid ablation and needle trajectory planning method for CT-guided percutaneous liver tumor ablation. Li S; Zhou F; Zhang Y; Xu S; Wang Y; Cheng L; Bie Z; Li B; Li XG Med Phys; 2024 Oct; ():. PubMed ID: 39387846 [TBL] [Abstract][Full Text] [Related]
10. Flexible needle puncture path planning for liver tumors based on deep reinforcement learning. Hu W; Jiang H; Wang M Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 36067775 [No Abstract] [Full Text] [Related]
11. Path planning for percutaneous lung biopsy based on the loose-Pareto and adaptive heptagonal optimization method. Liu Q; Zhou G; Zhong J; Tang L; Lu Y; Qin J; He L; Zhang J Med Biol Eng Comput; 2023 Jun; 61(6):1449-1472. PubMed ID: 36746837 [TBL] [Abstract][Full Text] [Related]
12. Semiautomatic Radiofrequency Ablation Planning Based on Constrained Clustering Process for Hepatic Tumors. Chen R; Jiang T; Lu F; Wang K; Kong D IEEE Trans Biomed Eng; 2018 Mar; 65(3):645-657. PubMed ID: 28600235 [TBL] [Abstract][Full Text] [Related]
13. Clinical flexible needle puncture path planning based on particle swarm optimization. Cai C; Sun C; Han Y; Zhang Q Comput Methods Programs Biomed; 2020 Sep; 193():105511. PubMed ID: 32408238 [TBL] [Abstract][Full Text] [Related]
14. A heuristic method for rapid and automatic radiofrequency ablation planning of liver tumors. Li R; An C; Wang S; Wang G; Zhao L; Yu Y; Wang L Int J Comput Assist Radiol Surg; 2023 Dec; 18(12):2213-2221. PubMed ID: 37145252 [TBL] [Abstract][Full Text] [Related]
15. Automatic configuration of the reference point method for fully automated multi-objective treatment planning applied to oropharyngeal cancer. van Haveren R; Heijmen BJM; Breedveld S Med Phys; 2020 Apr; 47(4):1499-1508. PubMed ID: 32017144 [TBL] [Abstract][Full Text] [Related]
16. Multiple objective planning for thermal ablation of liver tumors. Liang L; Cool D; Kakani N; Wang G; Ding H; Fenster A Int J Comput Assist Radiol Surg; 2020 Nov; 15(11):1775-1786. PubMed ID: 32880777 [TBL] [Abstract][Full Text] [Related]
17. Automatic surgical planning based on bone density assessment and path integral in cone space for reverse shoulder arthroplasty. Li H; Xu J; Zhang D; He Y; Chen X Int J Comput Assist Radiol Surg; 2022 Jun; 17(6):1017-1027. PubMed ID: 35489006 [TBL] [Abstract][Full Text] [Related]
18. Towards quantitative and intuitive percutaneous tumor puncture via augmented virtual reality. Li R; Tong Y; Yang T; Guo J; Si W; Zhang Y; Klein R; Heng PA Comput Med Imaging Graph; 2021 Jun; 90():101905. PubMed ID: 33848757 [TBL] [Abstract][Full Text] [Related]
19. Multi-objective constraints for path planning in screw fixation of scaphoid fractures. Xiao R; Qi S; Ren H; Lu T; Chen C Comput Biol Med; 2024 Nov; 182():109163. PubMed ID: 39305730 [TBL] [Abstract][Full Text] [Related]
20. Lung nodule pre-diagnosis and insertion path planning for chest CT images. Xie RL; Wang Y; Zhao YN; Zhang J; Chen GB; Fei J; Fu Z BMC Med Imaging; 2023 Feb; 23(1):22. PubMed ID: 36737717 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]