BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 38275637)

  • 1. Mitochondrial H
    Kim SR; Park JW; Choi YJ; Sonn SK; Oh GT; Lee BH; Chang TS
    Antioxidants (Basel); 2023 Dec; 13(1):. PubMed ID: 38275637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protective Role of Mitochondrial Peroxiredoxin III against UVB-Induced Apoptosis of Epidermal Keratinocytes.
    Baek JY; Park S; Park J; Jang JY; Wang SB; Kim SR; Woo HA; Lim KM; Chang TS
    J Invest Dermatol; 2017 Jun; 137(6):1333-1342. PubMed ID: 28202400
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peroxiredoxin V Protects against UVB-Induced Damage of Keratinocytes.
    Kim SR; Park JW; Lee BH; Lim KM; Chang TS
    Antioxidants (Basel); 2023 Jul; 12(7):. PubMed ID: 37507973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial H
    Rhee SG; Kil IS
    Free Radic Biol Med; 2016 Nov; 100():73-80. PubMed ID: 28236420
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mitochondrial H
    Rhee SG; Kil IS
    Free Radic Biol Med; 2016 Oct; 99():120-127. PubMed ID: 27497909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Peroxiredoxin III-deficiency sensitizes macrophages to oxidative stress.
    Li L; Kaifu T; Obinata M; Takai T
    J Biochem; 2009 Apr; 145(4):425-7. PubMed ID: 19155266
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silencing of peroxiredoxin III inhibits formaldehyde-induced oxidative damage of bone marrow cells in BALB/c mice.
    Yu G; Song X; Chen Q; Zhou Y
    Environ Toxicol; 2023 Dec; 38(12):2836-2844. PubMed ID: 37584494
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-apoptotic role of peroxiredoxin III in cervical cancer cells.
    Li L; Zhang YG; Chen CL
    FEBS Open Bio; 2013; 3():51-4. PubMed ID: 23772374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Study of the signaling function of sulfiredoxin and peroxiredoxin III in isolated adrenal gland: unsuitability of clonal and primary adrenocortical cells.
    Kil IS; Bae SH; Rhee SG
    Methods Enzymol; 2013; 527():169-81. PubMed ID: 23830631
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diclofenac impairs autophagic flux via oxidative stress and lysosomal dysfunction: Implications for hepatotoxicity.
    Jung SH; Lee W; Park SH; Lee KY; Choi YJ; Choi S; Kang D; Kim S; Chang TS; Hong SS; Lee BH
    Redox Biol; 2020 Oct; 37():101751. PubMed ID: 33080439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mitochondrial peroxiredoxins.
    Cao Z; Lindsay JG; Isaacs NW
    Subcell Biochem; 2007; 44():295-315. PubMed ID: 18084900
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury.
    Bae SH; Sung SH; Lee HE; Kang HT; Lee SK; Oh SY; Woo HA; Kil IS; Rhee SG
    Antioxid Redox Signal; 2012 Nov; 17(10):1351-61. PubMed ID: 22490042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondrial Permeability Transition Pore Sealing Agents and Antioxidants Protect Oxidative Stress and Mitochondrial Dysfunction Induced by Naproxen, Diclofenac and Celecoxib.
    Salimi A; Neshat MR; Naserzadeh P; Pourahmad J
    Drug Res (Stuttg); 2019 Oct; 69(11):598-605. PubMed ID: 31342476
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A.
    Siu WP; Pun PB; Latchoumycandane C; Boelsterli UA
    Toxicol Appl Pharmacol; 2008 Mar; 227(3):451-61. PubMed ID: 18191430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Lysosomal Labilisation and Lysosomal/mitochondrial Cross-Talk in Diclofenac Induced Hepatotoxicity.
    Pourahmad J; Mortada Y; Eskandari MR; Shahraki J
    Iran J Pharm Res; 2011; 10(4):877-87. PubMed ID: 24250426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Diclofenac induces apoptosis in hepatocytes by alteration of mitochondrial function and generation of ROS.
    Gómez-Lechón MJ; Ponsoda X; O'Connor E; Donato T; Castell JV; Jover R
    Biochem Pharmacol; 2003 Dec; 66(11):2155-67. PubMed ID: 14609740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homoeriodictyol protects human endothelial cells against oxidative insults through activation of Nrf2 and inhibition of mitochondrial dysfunction.
    Shen T; Li HZ; Li AL; Li YR; Wang XN; Ren DM
    Vascul Pharmacol; 2018 Oct; 109():72-82. PubMed ID: 29902531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular mechanism of diclofenac-induced apoptosis of promyelocytic leukemia: dependency on reactive oxygen species, Akt, Bid, cytochrome and caspase pathway.
    Inoue A; Muranaka S; Fujita H; Kanno T; Tamai H; Utsumi K
    Free Radic Biol Med; 2004 Oct; 37(8):1290-9. PubMed ID: 15451068
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Knockdown of IRF6 Attenuates Hydrogen Dioxide-Induced Oxidative Stress via Inhibiting Mitochondrial Dysfunction in HT22 Cells.
    Guo XM; Chen B; Lv JM; Lei Q; Pan YJ; Yang Q
    Cell Mol Neurobiol; 2016 Oct; 36(7):1077-86. PubMed ID: 26620051
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circadian Oscillation of Sulfiredoxin in the Mitochondria.
    Kil IS; Ryu KW; Lee SK; Kim JY; Chu SY; Kim JH; Park S; Rhee SG
    Mol Cell; 2015 Aug; 59(4):651-63. PubMed ID: 26236015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.