BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 38276374)

  • 1. A Fuzzy-Based System for Autonomous Unmanned Aerial Vehicle Ship Deck Landing.
    Tsitses I; Zacharia P; Xidias E; Papoutsidakis M
    Sensors (Basel); 2024 Jan; 24(2):. PubMed ID: 38276374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visual augmentation of deck-landing-ability improves helicopter ship landing decisions.
    Thomas M; Serres JR; Rakotomamonjy T; Ruffier F; Morice AHP
    Sci Rep; 2023 Mar; 13(1):5119. PubMed ID: 36991062
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Auto-landing of fixed wing unmanned aerial vehicles using the backstepping control.
    Lungu M
    ISA Trans; 2019 Dec; 95():194-210. PubMed ID: 31171303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Precise and GNSS-Free Landing System on Moving Platforms for Rotary-Wing UAVs.
    Alarcón F; García M; Maza I; Viguria A; Ollero A
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30791638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on Aerial Autonomous Docking and Landing Technology of Dual Multi-Rotor UAV.
    Wang L; Jiang X; Wang D; Wang L; Tu Z; Ai J
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501768
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cooperative Location Method for Leader-Follower UAV Formation Based on Follower UAV's Moving Vector.
    Zhu X; Lai J; Chen S
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monocular Vision System for Fixed Altitude Flight of Unmanned Aerial Vehicles.
    Huang KL; Chiu CC; Chiu SY; Teng YJ; Hao SS
    Sensors (Basel); 2015 Jul; 15(7):16848-65. PubMed ID: 26184213
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.
    Nepal U; Eslamiat H
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VIAE-Net: An End-to-End Altitude Estimation through Monocular Vision and Inertial Feature Fusion Neural Networks for UAV Autonomous Landing.
    Zhang X; He Z; Ma Z; Jun P; Yang K
    Sensors (Basel); 2021 Sep; 21(18):. PubMed ID: 34577508
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vision-Based Autonomous Following of a Moving Platform and Landing for an Unmanned Aerial Vehicle.
    Morales J; Castelo I; Serra R; Lima PU; Basiri M
    Sensors (Basel); 2023 Jan; 23(2):. PubMed ID: 36679628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fuzzy-Based Hybrid Control Algorithm for the Stabilization of a Tri-Rotor UAV.
    Ali ZA; Wang D; Aamir M
    Sensors (Basel); 2016 May; 16(5):. PubMed ID: 27171084
    [TBL] [Abstract][Full Text] [Related]  

  • 12. UAV Atmosphere Sounding for Rocket Launch Support.
    Bęben KP; Noga T; Cieśliński D; Kulpa D; Spiralski MR
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Autonomous Landing of Quadrotor Unmanned Aerial Vehicles Based on Multi-Level Marker and Linear Active Disturbance Reject Control.
    Lv M; Fan B; Fang J; Wang J
    Sensors (Basel); 2024 Mar; 24(5):. PubMed ID: 38475181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Airborne gamma-ray mapping using fixed-wing vertical take-off and landing (VTOL) uncrewed aerial vehicles.
    Woodbridge E; Connor DT; Verbelen Y; Hine D; Richardson T; Scott TB
    Front Robot AI; 2023; 10():1137763. PubMed ID: 37448876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. UAV Autonomous Tracking and Landing Based on Deep Reinforcement Learning Strategy.
    Xie J; Peng X; Wang H; Niu W; Zheng X
    Sensors (Basel); 2020 Oct; 20(19):. PubMed ID: 33019747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual Servoing Approach to Autonomous UAV Landing on a Moving Vehicle.
    Keipour A; Pereira GAS; Bonatti R; Garg R; Rastogi P; Dubey G; Scherer S
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vision-based safe autonomous UAV docking with panoramic sensors.
    Nguyen PT; Westerlund T; Peña Queralta J
    Front Robot AI; 2023; 10():1223157. PubMed ID: 38077455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fuzzy control algorithm for tracing air pollution based on unmanned aerial vehicles.
    Jiang X; Ding T; He Y; Cui X; Liu Z; Zhang Z
    J Air Waste Manag Assoc; 2022 Oct; 72(10):1174-1190. PubMed ID: 35839091
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrated optimization of unmanned aerial vehicle task allocation and path planning under steady wind.
    Luo H; Liang Z; Zhu M; Hu X; Wang G
    PLoS One; 2018; 13(3):e0194690. PubMed ID: 29561888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preflight Contingency Planning Approach for Fixed Wing UAVs with Engine Failure in the Presence of Winds.
    Ayhan B; Kwan C; Budavari B; Larkin J; Gribben D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634477
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.