These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 38276423)
21. Magnetic moment inversion at giant flux jump: dynamical property of critical state in type-II superconductors. Chabanenko V; Nabiałek A; Puźniak R; Kuchuk O; Chumak O; Pérez-Rodríguez F; Pal U; Garcia-Vazquez V; Cortés-Maldonado R; Qian J; Yao X; Szymczak H Sci Rep; 2019 Apr; 9(1):6233. PubMed ID: 30996324 [TBL] [Abstract][Full Text] [Related]
22. Complete and robust magnetic field confinement by superconductors in fusion magnets. Bort-Soldevila N; Cunill-Subiranas J; Sanchez A Sci Rep; 2024 Feb; 14(1):3653. PubMed ID: 38351026 [TBL] [Abstract][Full Text] [Related]
23. Enhanced critical current density in the pressure-induced magnetic state of the high-temperature superconductor FeSe. Jung SG; Kang JH; Park E; Lee S; Lin JY; Chareev DA; Vasiliev AN; Park T Sci Rep; 2015 Nov; 5():16385. PubMed ID: 26548444 [TBL] [Abstract][Full Text] [Related]
24. Nanosized Pinning Centers in the Rare Earth-Barium-Copper-Oxide Thin-Film Superconductors. Antončík F; Jankovský O; Hlásek T; Bartůněk V Nanomaterials (Basel); 2020 Jul; 10(8):. PubMed ID: 32707997 [TBL] [Abstract][Full Text] [Related]
25. In situ epitaxial MgB2 thin films for superconducting electronics. Zeng X; Pogrebnyakov AV; Kotcharov A; Jones JE; Xi XX; Lysczek EM; Redwing JM; Xu S; Li Q; Lettieri J; Schlom DG; Tian W; Pan X; Liu ZK Nat Mater; 2002 Sep; 1(1):35-8. PubMed ID: 12618845 [TBL] [Abstract][Full Text] [Related]
27. High-Pressure Synthesis and the Enhancement of the Superconducting Properties of FeSe Azam M; Manasa M; Zajarniuk T; Diduszko R; Cetner T; Morawski A; Więckowski J; Wiśniewski A; Singh SJ Materials (Basel); 2023 Jul; 16(15):. PubMed ID: 37570064 [TBL] [Abstract][Full Text] [Related]
28. Improvement of critical current density of Yamashita A; Shukunami Y; Mizuguchi Y R Soc Open Sci; 2022 Mar; 9(3):211874. PubMed ID: 35360352 [No Abstract] [Full Text] [Related]
30. Operation of a 400MHz NMR magnet using a (RE:Rare Earth)Ba Yanagisawa Y; Piao R; Iguchi S; Nakagome H; Takao T; Kominato K; Hamada M; Matsumoto S; Suematsu H; Jin X; Takahashi M; Yamazaki T; Maeda H J Magn Reson; 2014 Dec; 249():38-48. PubMed ID: 25462945 [TBL] [Abstract][Full Text] [Related]
31. Enhanced critical current density in K-doped Ba122 polycrystalline bulk superconductors via fast densification. Tokuta S; Hasegawa Y; Shimada Y; Yamamoto A iScience; 2022 Apr; 25(4):103992. PubMed ID: 35310943 [TBL] [Abstract][Full Text] [Related]
32. Electronic structure and superconductivity of FeSe-related superconductors. Liu X; Zhao L; He S; He J; Liu D; Mou D; Shen B; Hu Y; Huang J; Zhou XJ J Phys Condens Matter; 2015 May; 27(18):183201. PubMed ID: 25879999 [TBL] [Abstract][Full Text] [Related]
33. Vortex dynamics in superconducting MgB2 and prospects for applications. Bugoslavsky Y; Perkins GK; Qi X; Cohen LF; Caplin AD Nature; 2001 Mar; 410(6828):563-5. PubMed ID: 11279489 [TBL] [Abstract][Full Text] [Related]
34. Direct current magnetic Hall probe technique for measurement of field penetration in thin film superconductors for superconducting radio frequency resonators. Senevirathne IH; Gurevich A; Delayen JR Rev Sci Instrum; 2022 May; 93(5):055104. PubMed ID: 35649811 [TBL] [Abstract][Full Text] [Related]
35. Development of a Persistent Superconducting Joint between Bi-2212/Ag-alloy Multifilamentary Round Wires. Chen P; Trociewitz UP; Davis DS; Bosque E; Hilton D; Kim Y; Abraimov D; Starch W; Jiang J; Hellstrom EE; Larbalestier DC Supercond Sci Technol; 2017 Feb; 30(2):025020. PubMed ID: 30899145 [TBL] [Abstract][Full Text] [Related]
36. Superconducting-magnetic heterostructures: a method of decreasing AC losses and improving critical current density in multifilamentary conductors. Glowacki BA; Majoros M J Phys Condens Matter; 2009 Jun; 21(25):254206. PubMed ID: 21828430 [TBL] [Abstract][Full Text] [Related]
37. Analysis of Electromagnetic Properties of Bulk Superconductors. Lee SH J Nanosci Nanotechnol; 2021 Sep; 21(9):4941-4943. PubMed ID: 33691895 [TBL] [Abstract][Full Text] [Related]
38. Thermodynamic and transport properties of superconducting Mg10B2. Finnemore DK; Ostenson JE; Bud'ko SL; Lapertot G; Canfield PC Phys Rev Lett; 2001 Mar; 86(11):2420-2. PubMed ID: 11289944 [TBL] [Abstract][Full Text] [Related]
39. Hard Superconducting Gap and Diffusion-Induced Superconductors in Ge-Si Nanowires. Ridderbos J; Brauns M; de Vries FK; Shen J; Li A; Kölling S; Verheijen MA; Brinkman A; van der Wiel WG; Bakkers EPAM; Zwanenburg FA Nano Lett; 2020 Jan; 20(1):122-130. PubMed ID: 31771328 [TBL] [Abstract][Full Text] [Related]
40. Transport spectroscopy on trapped superconducting nano-islands of Pb: signature of unconventional pairing. Sirohi A; Saha P; Gayen S; Singh A; Sheet G Nanotechnology; 2016 Jul; 27(28):285701. PubMed ID: 27251201 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]