These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
172 related articles for article (PubMed ID: 38276425)
1. Experimental Analysis of Moisture-Dependent Thermal Conductivity, and Hygric Properties of Novel Hemp-shive Insulations with Numerical Assessment of Their In-Built Hygrothermal and Energy Performance. Latif E Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276425 [TBL] [Abstract][Full Text] [Related]
2. Mechanical, Thermal, and Moisture Buffering Properties of Novel Insulating Hemp-Lime Composite Building Materials. Abdellatef Y; Khan MA; Khan A; Alam MI; Kavgic M Materials (Basel); 2020 Nov; 13(21):. PubMed ID: 33171950 [TBL] [Abstract][Full Text] [Related]
3. Hygrothermal Properties and Performance of Bio-Based Insulation Materials Locally Sourced in Sweden. Ranefjärd O; Strandberg-de Bruijn PB; Wadsö L Materials (Basel); 2024 Apr; 17(9):. PubMed ID: 38730828 [TBL] [Abstract][Full Text] [Related]
4. Numerical Evaluation of the Hygrothermal Performance of a Capillary Active Internal Wall Insulation System under Different Internal Conditions. Kaczorek D Materials (Basel); 2022 Mar; 15(5):. PubMed ID: 35269093 [TBL] [Abstract][Full Text] [Related]
5. An Experimental Evaluation of Hemp as an Internal Curing Agent in Concrete Materials. Nazmul RT; Sainsbury BA; Al-Deen S; Garcez EO; Ashraf M Materials (Basel); 2023 May; 16(11):. PubMed ID: 37297126 [TBL] [Abstract][Full Text] [Related]
6. Hygrothermal Behavior of a Washing Fines-Hemp Wall under French and Tunisian Summer Climates: Experimental and Numerical Approach. Boumediene N; Collet F; Prétot S; Elaoud S Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35161048 [TBL] [Abstract][Full Text] [Related]
7. Moisture buffering and mould growth characteristics of naturally ventilated lime plastered houses. Paralkar V; Damle R UCL Open Environ; 2024; 6():e1988. PubMed ID: 39355645 [TBL] [Abstract][Full Text] [Related]
8. The Heat Conductivity Properties of Hemp-Lime Composite Material Used in Single-Family Buildings. Pochwała S; Makiola D; Anweiler S; Böhm M Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32102307 [TBL] [Abstract][Full Text] [Related]
9. Hygric Behavior of Viticulture By-Product Composites for Building Insulation. Badouard C; Maalouf C; Bliard C; Polidori G; Bogard F Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160758 [TBL] [Abstract][Full Text] [Related]
10. Research on Thermal Insulation Performance and Impact on Indoor Air Quality of Cellulose-Based Thermal Insulation Materials. Petcu C; Hegyi A; Stoian V; Dragomir CS; Ciobanu AA; Lăzărescu AV; Florean C Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570162 [TBL] [Abstract][Full Text] [Related]
11. Production of Particleboard Using Various Particle Size Hemp Shives as Filler. Zvirgzds K; Kirilovs E; Kukle S; Gross U Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160835 [TBL] [Abstract][Full Text] [Related]
12. Hygrothermal and Acoustical Performance of Starch-Beet Pulp Composites for Building Thermal Insulation. Karaky H; Maalouf C; Bliard C; Moussa T; El Wakil N; Lachi M; Polidori G Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30189650 [TBL] [Abstract][Full Text] [Related]
13. Mechanical, physical and thermal properties of composite materials produced with the basidiomycete Fomes fomentarius. Schmidt B; Freidank-Pohl C; Zillessen J; Stelzer L; Guitar TN; Lühr C; Müller H; Zhang F; Hammel JU; Briesen H; Jung S; Gusovius HJ; Meyer V Fungal Biol Biotechnol; 2023 Dec; 10(1):22. PubMed ID: 38049892 [TBL] [Abstract][Full Text] [Related]
14. Numerical analysis on the hygrothermal behavior of building envelope according to CLT wall assembly considering the hygrothermal-environmental zone in Korea. Chang SJ; Yoo J; Wi S; Kim S Environ Res; 2020 Dec; 191():110198. PubMed ID: 32949614 [TBL] [Abstract][Full Text] [Related]
15. Highly Insulated Wall Systems with Exterior Insulation of Polyisocyanurate under Different Facer Materials: Material Characterization and Long-Term Hygrothermal Performance Assessment. Iffa E; Tariku F; Simpson WY Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751481 [TBL] [Abstract][Full Text] [Related]
16. Analysis of Sheep Wool-Based Composites for Building Insulation. Dénes TO; Iştoan R; Tǎmaş-Gavrea DR; Manea DL; Hegyi A; Popa F; Vasile O Polymers (Basel); 2022 May; 14(10):. PubMed ID: 35631991 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of hygrothermal performance of wood-derived biocomposite with biochar in response to climate change. Jeon J; Park JH; Yuk H; Kim YU; Yun BY; Wi S; Kim S Environ Res; 2021 Feb; 193():110359. PubMed ID: 33127398 [TBL] [Abstract][Full Text] [Related]
18. The influence of the type of lime on the hygric behaviour and bio-receptivity of hemp lime composites used for rendering applications in sustainable new construction and repair works. Arizzi A; Brümmer M; Martín-Sanchez I; Cultrone G; Viles H PLoS One; 2015; 10(5):e0125520. PubMed ID: 26017563 [TBL] [Abstract][Full Text] [Related]
19. Analysis of the Occurrence of Thermal Bridges in Several Variants of Connections of the Wall and the Ground Floor in Construction Technology with the Use of a Hemp-lime Composite. Brzyski P; Grudzińska M; Majerek D Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31357519 [TBL] [Abstract][Full Text] [Related]
20. Thermal and Sound Characterization of a New Biocomposite Material. Bojković J; Marašević M; Stojić N; Bulatović V; Radičević B Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374393 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]