These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38276434)

  • 1. Applications of Thermochemical Modeling in Molten Salt Reactors.
    Besmann TM; Schorne-Pinto J; Aziziha M; Mofrad AM; Booth RE; Yingling JA; Paz Soldan Palma J; Dixon CM; Wilson JA; Hartanto D
    Materials (Basel); 2024 Jan; 17(2):. PubMed ID: 38276434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irradiated fuel salt data library for a molten salt reactor produced with Serpent2 and SOURCES 4C codes.
    Mishra V; Elter Z; Branger E; Grape S; Mirmiran S
    Data Brief; 2024 Feb; 52():109817. PubMed ID: 38076474
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of fission and activation products in molten salt reactors and their potential impact on the radionuclide monitoring stations of the International Monitoring System.
    Johnson C; Slack JL; Sharma MK; Simpson CK; Burnett JL
    J Environ Radioact; 2021 Aug; 234():106625. PubMed ID: 33957486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermophysical Properties of FUNaK (NaF-KF-UF
    Fache M; Voigt L; Colle JY; Hald J; Beneš O
    Materials (Basel); 2024 Jun; 17(11):. PubMed ID: 38894038
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new methodology for measuring the enthalpies of mixing and heat capacities of molten chloride salts using high temperature drop calorimetry.
    Strzelecki AC; Cockreham CB; Parker SS; Mann SC; Lhermitte C; Wu D; Guo X; Monreal M; Jackson JM; Mitchell J; Boukhalfa H; Xu H
    Rev Sci Instrum; 2024 Jan; 95(1):. PubMed ID: 38236299
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data library of irradiated fuel salt and off-gas tank composition for a molten salt reactor concept produced with Serpent2 and SOURCES 4C codes.
    Mishra V; Elter Z; Branger E; Grape S; Mirmiran S
    Data Brief; 2024 Jun; 54():110314. PubMed ID: 38550234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaporation behavior of
    Huo Y; Luo Y; Zhao Z; Geng J; Dou Q; Ma J
    RSC Adv; 2022 Mar; 12(12):7085-7091. PubMed ID: 35424680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Possible impacts of molten salt reactors on the International Monitoring System.
    Eslinger PW; Johnson CM; McIntyre JI; Simpson CK; Slack JL; Burnett JL
    J Environ Radioact; 2021 Aug; 234():106622. PubMed ID: 33965293
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and operation of a molten salt electrochemical cell.
    Consiglio AN; Carotti F; Liu E; Williams H; Scarlat RO
    MethodsX; 2022; 9():101626. PubMed ID: 35251944
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermodynamic description for water, hydrogen fluoride and hydrogen dissolutions in cryolite-base molten salts.
    Wang K; Chartrand P
    Phys Chem Chem Phys; 2018 Jun; 20(25):17324-17341. PubMed ID: 29904769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and performance of a molten fluoride salt-compatible optical thermophysical property measurement system.
    Robertson SG; Short MP
    Rev Sci Instrum; 2021 Jun; 92(6):064905. PubMed ID: 34243588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient release of radioactive iodine from the fission of UF
    Geng J; Zhao Z; Cheng Z; Li W; Dou Q; Fu H; Hu J; Cai X; Chen J; Li Q
    RSC Adv; 2021 Jun; 11(37):22611-22617. PubMed ID: 35480418
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarizable force field parameterization and theoretical simulations of ThCl
    Liu JB; Chen X; Lu JB; Cui HQ; Li J
    J Comput Chem; 2018 Nov; 39(29):2432-2438. PubMed ID: 30351490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Correlational Approach to Predict the Enthalpy of Mixing for Chloride Melt Systems.
    Schorne-Pinto J; Yingling JA; Christian MS; Mofrad AM; Aslani MAA; Besmann TM
    ACS Omega; 2022 Jan; 7(1):362-371. PubMed ID: 35036706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic and Transport Properties of LiF and FLiBe Molten Salts with Deep Learning Potentials.
    Rodriguez A; Lam S; Hu M
    ACS Appl Mater Interfaces; 2021 Nov; 13(46):55367-55379. PubMed ID: 34767334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short life fission products extracted from molten salt reactor fuel for radiopharmaceutical applications.
    Degueldre C; Findlay J; Cheneler D; Sardar S; Green S
    Appl Radiat Isot; 2024 Mar; 205():111146. PubMed ID: 38154267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cesium and iodine release from fluoride-based molten salt reactor fuel.
    Beneš O; Capelli E; Morelová N; Colle JY; Tosolin A; Wiss T; Cremer B; Konings RJM
    Phys Chem Chem Phys; 2021 Apr; 23(15):9512-9523. PubMed ID: 33885062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control and surveillance of redox potential for
    Zhao Z; Geng J; Cheng Z; Li W; Dou Q; Zhang L; Li Q
    RSC Adv; 2024 May; 14(23):15994-16000. PubMed ID: 38765474
    [No Abstract]   [Full Text] [Related]  

  • 19. Machine learning-assisted laser-induced breakdown spectroscopy for monitoring molten salt compositions of small modular reactor fuel under varying laser focus positions.
    Lee Y; Foster RI; Kim H; Choi S
    Anal Chim Acta; 2023 Feb; 1241():340804. PubMed ID: 36657867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling LiF and FLiBe Molten Salts with Robust Neural Network Interatomic Potential.
    Lam ST; Li QJ; Ballinger R; Forsberg C; Li J
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):24582-24592. PubMed ID: 34019760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.