BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 38276738)

  • 1. Electrostatically Doped Junctionless Graphene Nanoribbon Tunnel Field-Effect Transistor for High-Performance Gas Sensing Applications: Leveraging Doping Gates for Multi-Gas Detection.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jan; 14(2):. PubMed ID: 38276738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synergy of Electrostatic and Chemical Doping to Improve the Performance of Junctionless Carbon Nanotube Tunneling Field-Effect Transistors: Ultrascaling, Energy-Efficiency, and High Switching Performance.
    Tamersit K; Kouzou A; Bourouba H; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 Jan; 12(3):. PubMed ID: 35159807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Performance Projection of Vacuum Gate Dielectric Doping-Free Carbon Nanoribbon/Nanotube Field-Effect Transistors for Radiation-Immune Nanoelectronics.
    Tamersit K; Kouzou A; Rodriguez J; Abdelrahem M
    Nanomaterials (Basel); 2024 Jun; 14(11):. PubMed ID: 38869587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Junctionless Mode in Improving the Photosensitivity of Sub-10 nm Carbon Nanotube/Nanoribbon Field-Effect Phototransistors: Quantum Simulation, Performance Assessment, and Comparison.
    Tamersit K; Madan J; Kouzou A; Pandey R; Kennel R; Abdelrahem M
    Nanomaterials (Basel); 2022 May; 12(10):. PubMed ID: 35630861
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance Assessment of a Junctionless Heterostructure Tunnel FET Biosensor Using Dual Material Gate.
    Xie H; Liu H
    Micromachines (Basel); 2023 Mar; 14(4):. PubMed ID: 37421038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leveraging negative capacitance ferroelectric materials for performance boosting of sub-10 nm graphene nanoribbon field-effect transistors: a quantum simulation study.
    Tamersit K; Moaiyeri MH; Jooq MKQ
    Nanotechnology; 2022 Aug; 33(46):. PubMed ID: 35947928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Junctionless Electric-Double-Layer MoS
    Jeon DY; Park J; Park SJ; Kim GT
    ACS Appl Mater Interfaces; 2023 Feb; 15(6):8298-8304. PubMed ID: 36740775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Si/Ge Hetero Tunnel Field-Effect Transistor with Junctionless Channel Based on Nanowire.
    Lee JC; Ahn TJ; Yu YS
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6750-6754. PubMed ID: 31027023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Germanium-Around-Source Gate-All-Around tunnelling Field-Effect Transistor for Low-Power Applications.
    Han K; Long S; Deng Z; Zhang Y; Li J
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32028719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High performance tunnel field-effect transistor by gate and source engineering.
    Huang R; Huang Q; Chen S; Wu C; Wang J; An X; Wang Y
    Nanotechnology; 2014 Dec; 25(50):505201. PubMed ID: 25427134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of the Ge mole fraction in improving the performance of a nanoscale junctionless tunneling FET: concept and scaling capability.
    Ferhati H; Djeffal F; Bentrcia T
    Beilstein J Nanotechnol; 2018; 9():1856-1862. PubMed ID: 30013879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. WSe
    Pang CS; Chen CY; Ameen T; Zhang S; Ilatikhameneh H; Rahman R; Klimeck G; Chen Z
    Small; 2019 Oct; 15(41):e1902770. PubMed ID: 31448564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High On-Current Ge-Channel Heterojunction Tunnel Field-Effect Transistor Using Direct Band-to-Band Tunneling.
    Kim G; Lee J; Kim JH; Kim S
    Micromachines (Basel); 2019 Jan; 10(2):. PubMed ID: 30678322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design and Analysis of CMOS-Compatible III-V Compound Electron-Hole Bilayer Tunneling Field-Effect Transistor for Ultra-Low-Power Applications.
    Kim SY; Seo JH; Yoon YJ; Lee HY; Lee SM; Cho S; Kang IM
    J Nanosci Nanotechnol; 2015 Oct; 15(10):7486-92. PubMed ID: 26726356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Study of a Gate-Engineered Vertical TFET with GaSb/GaAs
    Xie H; Chen Y; Liu H; Guo D
    Materials (Basel); 2021 Mar; 14(6):. PubMed ID: 33804142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical Characteristics of Ge/Si-Based Source Pocket Tunnel Field-Effect Transistors.
    Ahn TJ; Yu YS
    J Nanosci Nanotechnol; 2018 Sep; 18(9):5887-5892. PubMed ID: 29677711
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance enhancement of charge plasma-based junctionless TFET (JL-TFET) using stimulated n-pocket and heterogeneous gate dielectric.
    Hussain S; Mustakim N; Hasan M; Saha JK
    Nanotechnology; 2021 May; 32(33):. PubMed ID: 33662937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A subthermionic tunnel field-effect transistor with an atomically thin channel.
    Sarkar D; Xie X; Liu W; Cao W; Kang J; Gong Y; Kraemer S; Ajayan PM; Banerjee K
    Nature; 2015 Oct; 526(7571):91-5. PubMed ID: 26432247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel fabrication method for the nanoscale tunneling field effect transistor.
    Kim HW; Kim JH; Kim SW; Sun MC; Kim G; Park E; Kim H; Kim KW; Park BG
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5592-7. PubMed ID: 22966616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A high performance trench gate tunneling field effect transistor based on quasi-broken gap energy band alignment heterojunction.
    Chen S; Wang S; Liu H; Han T; Zhang H
    Nanotechnology; 2022 Mar; 33(22):. PubMed ID: 35180714
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.