These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38276860)

  • 1. Non-Contact Current Sensing System Based on the Giant Magnetoimpedance Effect of CoFeNiSiB Amorphous Ribbon Meanders.
    Yang Z; Wang Z; Liu M; Sun X
    Micromachines (Basel); 2024 Jan; 15(1):. PubMed ID: 38276860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of magnetoimpedance behaviors in meander CoFeNiSiB amorphous ribbon for deformation sensing applications.
    Yang Z; Liu M; Luo L; Wang Z; Li H; Sun X; Xu J; Sun X; Lei C
    J Phys Condens Matter; 2023 Dec; 36(12):. PubMed ID: 38035380
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Giant Magnetoimpedance Effect of Multilayered Thin Film Meanders Formed on Flexible Substrates.
    Liu M; Wang Z; Meng Z; Sun X; Huang Y; Guo Y; Yang Z
    Micromachines (Basel); 2023 May; 14(5):. PubMed ID: 37241625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetic Dynabeads detection by sensitive element based on giant magnetoimpedance.
    Kurlyandskaya G; Levit V
    Biosens Bioelectron; 2005 Feb; 20(8):1611-6. PubMed ID: 15626616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced Magnetoimpedance Effect in Co-Based Micron Composite CoFeNiSiB Ribbon Strips Coated by Carbon and FeCoGa Nanofilms for Sensing Applications.
    Yang Z; Liu M; Chen J; Sun X; Lei C; Shen Y; Wang Z; Zhu M; Meng Z
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793816
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly Integrated MEMS Magnetic Sensor Based on GMI Effect of Amorphous Wire.
    Chen J; Li J; Xu L
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30965586
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Disturbing Effect of the Stray Magnetic Fields on Magnetoimpedance Sensors.
    Wang T; Zhou Y; Lei C; Zhi S; Guo L; Li H; Wu Z; Xie S; Luo J; Pu H
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27763498
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain Dependence of Hysteretic Giant Magnetoimpedance Effect in Co-Based Amorphous Ribbon.
    Nowicki M; Gazda P; Szewczyk R; Marusenkov A; Nosenko A; Kyrylchuk V
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31262016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Fabrication of a Miniaturized GMI Magnetic Sensor Based on Amorphous Wire by MEMS Technology.
    Chen J; Li J; Li Y; Chen Y; Xu L
    Sensors (Basel); 2018 Mar; 18(3):. PubMed ID: 29494477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnetoimpedance Effect in the Ribbon-Based Patterned Soft Ferromagnetic Meander-Shaped Elements for Sensor Application.
    Yang Z; Chlenova AA; Golubeva EV; Volchkov SO; Guo P; Shcherbinin SV; Kurlyandskaya GV
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31146498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Impact of Bending Stress on the Performance of Giant Magneto-Impedance (GMI) Magnetic Sensors.
    Nabias J; Asfour A; Yonnet JP
    Sensors (Basel); 2017 Mar; 17(3):. PubMed ID: 28335542
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of chipless, wireless current sensor system based on giant magnetoimpedance magnetic sensor and surface acoustic wave transponder.
    Kondalkar VV; Li X; Park I; Yang SS; Lee K
    Sci Rep; 2018 Feb; 8(1):2401. PubMed ID: 29402953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface modified amorphous ribbon based magnetoimpedance biosensor.
    Kurlyandskaya GV; Fal Miyar V
    Biosens Bioelectron; 2007 Apr; 22(9-10):2341-5. PubMed ID: 16914305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-cost Sensors Based on the GMI Effect in Recycled Transformer Cores.
    Jantaratana P; Sirisathitkul C
    Sensors (Basel); 2008 Mar; 8(3):1575-1584. PubMed ID: 27879781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetoimpedance Response and Field Sensitivity in Stress-Annealed Co-Based Microwires for Sensor Applications.
    González-Alonso D; González-Legarreta L; Corte-Leon P; Zhukova V; Ipatov M; Blanco JM; Zhukov A
    Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32517142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimization of magnetic properties and GMI effect of Thin Co-rich Microwires for GMI Microsensors.
    Gonzalez-Legarreta L; Corte-Leon P; Zhukova V; Ipatov M; Blanco JM; Gonzalez J; Zhukov A
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32168845
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate Measurements of the Rotational Velocities of Brushless Direct Current-Motors by Using an Ultrasensitive Magnetoimpedance Sensing System.
    Wang T; Wang B; Luo Y; Li H; Rao J; Wu Z; Liu M
    Micromachines (Basel); 2019 Dec; 10(12):. PubMed ID: 31817762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wide Linearity Range and Highly Sensitive MEMS-Based Micro-Fluxgate Sensor with Double-Layer Magnetic Core Made of Fe⁻Co⁻B Amorphous Alloy.
    Guo L; Wang C; Zhi S; Feng Z; Lei C; Zhou Y
    Micromachines (Basel); 2017 Nov; 8(12):. PubMed ID: 30400540
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combination of a Vibrational Electromagnetic Energy Harvester and a Giant Magnetoimpedance (GMI) Sensor.
    Beato-López JJ; Royo-Silvestre I; Algueta-Miguel JM; Gómez-Polo C
    Sensors (Basel); 2020 Mar; 20(7):. PubMed ID: 32230989
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Neuro-genetic system for optimization of GMI samples sensitivity.
    Pitta Botelho AC; Vellasco MM; Hall Barbosa CR; Costa Silva E
    Neural Netw; 2016 Mar; 75():141-9. PubMed ID: 26775132
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.