These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38276985)

  • 21. Quenching of the upconversion luminescence of NaYF₄:Yb³⁺,Er³⁺ and NaYF₄:Yb³⁺,Tm³⁺ nanophosphors by water: the role of the sensitizer Yb³⁺ in non-radiative relaxation.
    Arppe R; Hyppänen I; Perälä N; Peltomaa R; Kaiser M; Würth C; Christ S; Resch-Genger U; Schäferling M; Soukka T
    Nanoscale; 2015 Jul; 7(27):11746-57. PubMed ID: 26104183
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Precisely tailored shell thickness and Ln
    Serge Correales YE; Hazra C; Ullah S; Lima LR; Ribeiro SJL
    Nanoscale Adv; 2019 May; 1(5):1936-1947. PubMed ID: 36134241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Power-Dependent Optimal Concentrations of Tm
    Wen S; Li D; Liu Y; Chen C; Wang F; Zhou J; Bao G; Zhang L; Jin D
    J Phys Chem Lett; 2022 Jun; ():5316-5323. PubMed ID: 35675531
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Yb,Nd,Er-doped upconversion nanoparticles: 980 nm versus 808 nm excitation.
    Wiesholler LM; Frenzel F; Grauel B; Würth C; Resch-Genger U; Hirsch T
    Nanoscale; 2019 Jul; 11(28):13440-13449. PubMed ID: 31287476
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Water dispersible upconverting nanoparticles: effects of surface modification on their luminescence and colloidal stability.
    Wilhelm S; Kaiser M; Würth C; Heiland J; Carrillo-Carrion C; Muhr V; Wolfbeis OS; Parak WJ; Resch-Genger U; Hirsch T
    Nanoscale; 2015 Jan; 7(4):1403-10. PubMed ID: 25503253
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Huge enhancement of upconversion luminescence by dye/Nd
    Zhao F; Yin D; Wu C; Liu B; Chen T; Guo M; Huang K; Chen Z; Zhang Y
    Dalton Trans; 2017 Nov; 46(46):16180-16189. PubMed ID: 29182691
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand-Assisted Direct Lithography of Upconverting and Avalanching Nanoparticles for Nonlinear Photonics.
    Pan JA; Skripka A; Lee C; Qi X; Pham AL; Woods JJ; Abergel RJ; Schuck PJ; Cohen BE; Chan EM
    J Am Chem Soc; 2024 Mar; 146(11):7487-7497. PubMed ID: 38466925
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High-intensity first near-infrared emission through energy migration in multilayered upconversion nanoparticles.
    Zheng X; Chen Y; Liu M; Pan S; Liu Z; Xu D; Lin H
    Phys Chem Chem Phys; 2023 Jul; 25(29):19923-19931. PubMed ID: 37458701
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantification of the Activator and Sensitizer Ion Distributions in NaYF
    Clark PCJ; Andresen E; Sear MJ; Favaro M; Girardi L; van de Krol R; Resch-Genger U; Starr DE
    Small; 2022 Jul; 18(29):e2107976. PubMed ID: 35732601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. 808 nm excited energy migration upconversion nanoparticles driven by a Nd
    Guo S; Tsang MK; Lo WS; Hao J; Wong WT
    Nanoscale; 2018 Feb; 10(6):2790-2803. PubMed ID: 29359778
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Upconversion Perovskite Nanocrystal Heterostructures with Enhanced Luminescence and Stability by Lattice Matching.
    Ruan L; Zhang Y
    ACS Appl Mater Interfaces; 2021 Nov; 13(43):51362-51372. PubMed ID: 34664937
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Multicolor Long-Term Single-Particle Tracking Using 10 nm Upconverting Nanoparticles.
    F Shida J; Ma K; Toll HW; Salinas O; Ma X; Peng CS
    Nano Lett; 2024 Apr; 24(14):4194-4201. PubMed ID: 38497588
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Universal Emission Characteristics of Upconverting Nanoparticles Revealed by Single-Particle Spectroscopy.
    Kim J; Park HS; Ahn Y; Cho YJ; Shin HH; Hong KS; Nam SH
    ACS Nano; 2023 Jan; 17(1):648-656. PubMed ID: 36565305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Light-Emitting Diode Excitation for Upconversion Microscopy: A Quantitative Assessment.
    Cao Y; Zheng X; De Camillis S; Shi B; Piper JA; Packer NH; Lu Y
    Nano Lett; 2020 Dec; 20(12):8487-8492. PubMed ID: 32936645
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of Silica Surface Coating on Operated Photodynamic Therapy Property of Yb
    Li Y; Wang R; Xu Y; Zheng W; Li Y
    Inorg Chem; 2018 Jul; 57(13):8012-8018. PubMed ID: 29905468
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NIR-I-Responsive Single-Band Upconversion Emission through Energy Migration in Core-Shell-Shell Nanostructures.
    Ding M; Cui S; Fang L; Lin Z; Lu C; Yang X
    Angew Chem Int Ed Engl; 2022 Jul; 61(29):e202203631. PubMed ID: 35416381
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Upconversion, MRI imaging and optical trapping studies of silver nanoparticle decorated multifunctional NaGdF4:Yb,Er nanocomposite.
    Yamini S; Gunaseelan M; Gangadharan A; Lopez SA; Martirosyan KS; Girigoswami A; Roy B; Manonmani J; Jayaraman S
    Nanotechnology; 2021 Nov; 33(8):. PubMed ID: 34753112
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Turn-on detection of a cancer marker based on near-infrared luminescence energy transfer from NaYF4:Yb,Tm/NaGdF4 core-shell upconverting nanoparticles to gold nanorods.
    Chen H; Guan Y; Wang S; Ji Y; Gong M; Wang L
    Langmuir; 2014 Nov; 30(43):13085-91. PubMed ID: 25296290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synergistic upconversion photodynamic and photothermal therapy under cold near-infrared excitation.
    Zhang Y; Zhu X; Zhang J; Wu Y; Liu J; Zhang Y
    J Colloid Interface Sci; 2021 Oct; 600():513-529. PubMed ID: 34034118
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Aptamer biosensor for Salmonella typhimurium detection based on luminescence energy transfer from Mn
    Cheng K; Zhang J; Zhang L; Wang L; Chen H
    Spectrochim Acta A Mol Biomol Spectrosc; 2017 Jan; 171():168-173. PubMed ID: 27526340
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.