These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 38277163)

  • 1. An artificial nickel chlorinase based on the biotin-streptavidin technology.
    Yu K; Zhang K; Jakob RP; Maier T; Ward TR
    Chem Commun (Camb); 2024 Feb; 60(14):1944-1947. PubMed ID: 38277163
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexibility of a biotinylated ligand in artificial metalloenzymes based on streptavidin--an insight from molecular dynamics simulations with classical and ab initio force fields.
    Panek JJ; Ward TR; Jezierska-Mazzarello A; Novic M
    J Comput Aided Mol Des; 2010 Sep; 24(9):719-32. PubMed ID: 20526651
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A dual anchoring strategy for the localization and activation of artificial metalloenzymes based on the biotin-streptavidin technology.
    Zimbron JM; Heinisch T; Schmid M; Hamels D; Nogueira ES; Schirmer T; Ward TR
    J Am Chem Soc; 2013 Apr; 135(14):5384-8. PubMed ID: 23496309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Challenges and Opportunities.
    Heinisch T; Ward TR
    Acc Chem Res; 2016 Sep; 49(9):1711-21. PubMed ID: 27529561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Breaking Symmetry: Engineering Single-Chain Dimeric Streptavidin as Host for Artificial Metalloenzymes.
    Wu S; Zhou Y; Rebelein JG; Kuhn M; Mallin H; Zhao J; Igareta NV; Ward TR
    J Am Chem Soc; 2019 Oct; 141(40):15869-15878. PubMed ID: 31509711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enantioselective Hydroxylation of Benzylic C(sp
    Serrano-Plana J; Rumo C; Rebelein JG; Peterson RL; Barnet M; Ward TR
    J Am Chem Soc; 2020 Jun; 142(24):10617-10623. PubMed ID: 32450689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Library design and screening protocol for artificial metalloenzymes based on the biotin-streptavidin technology.
    Mallin H; Hestericová M; Reuter R; Ward TR
    Nat Protoc; 2016 May; 11(5):835-52. PubMed ID: 27031496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural, kinetic, and docking studies of artificial imine reductases based on biotin-streptavidin technology: an induced lock-and-key hypothesis.
    Robles VM; Dürrenberger M; Heinisch T; Lledós A; Schirmer T; Ward TR; Maréchal JD
    J Am Chem Soc; 2014 Nov; 136(44):15676-83. PubMed ID: 25317660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streptavidin Coverage on Biotinylated Surfaces.
    Hamming PHE; Huskens J
    ACS Appl Mater Interfaces; 2021 Dec; 13(48):58114-58123. PubMed ID: 34813287
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biotinylation of silicon and nickel surfaces and detection of streptavidin as biosensor.
    Seto H; Yamashita C; Kamba S; Kondo T; Hasegawa M; Matsuno M; Ogawa Y; Hoshino Y; Miura Y
    Langmuir; 2013 Jul; 29(30):9457-63. PubMed ID: 23808479
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Streptavidin functionalized nickel nanowires: A new ferromagnetic platform for biotinylated-based assays.
    Neves MM; González-García MB; Hernández-Santos D; Fanjul-Bolado P
    Talanta; 2015 Nov; 144():283-8. PubMed ID: 26452823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial Metalloenzymes Based on the Biotin-Streptavidin Technology: Enzymatic Cascades and Directed Evolution.
    Liang AD; Serrano-Plana J; Peterson RL; Ward TR
    Acc Chem Res; 2019 Mar; 52(3):585-595. PubMed ID: 30735358
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spiers Memorial Lecture: Shielding the active site: a streptavidin superoxide-dismutase chimera as a host protein for asymmetric transfer hydrogenation.
    Igareta NV; Tachibana R; Spiess DC; Peterson RL; Ward TR
    Faraday Discuss; 2023 Aug; 244(0):9-20. PubMed ID: 36924204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of tryptophan residue fluorination on streptavidin stability and biotin-streptavidin interactions via molecular dynamics simulations.
    Panek JJ; Ward TR; Jezierska A; Novic M
    J Mol Model; 2009 Mar; 15(3):257-66. PubMed ID: 19052784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin-streptavidin interaction for biological applications.
    Lagunas A; Comelles J; Martínez E; Samitier J
    Langmuir; 2010 Sep; 26(17):14154-61. PubMed ID: 20712344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese Transfer Hydrogenases Based on the Biotin-Streptavidin Technology.
    Wang W; Tachibana R; Zou Z; Chen D; Zhang X; Lau K; Pojer F; Ward TR; Hu X
    Angew Chem Int Ed Engl; 2023 Oct; 62(43):e202311896. PubMed ID: 37671593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and synthesis of bis-biotin-containing reagents for applications utilizing monoclonal antibody-based pretargeting systems with streptavidin mutants.
    Wilbur DS; Park SI; Chyan MK; Wan F; Hamlin DK; Shenoi J; Lin Y; Wilbur SM; Buchegger F; Pantelias A; Pagel JM; Press OW
    Bioconjug Chem; 2010 Jul; 21(7):1225-38. PubMed ID: 20597486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transfer hydrogenations catalyzed by streptavidin-hosted secondary amine organocatalysts.
    Santi N; Morrill LC; Swiderek K; Moliner V; Luk LYP
    Chem Commun (Camb); 2021 Feb; 57(15):1919-1922. PubMed ID: 33496282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Supramolecular architectures of streptavidin on biotinylated self-assembled monolayers. Tracking biomolecular reorganization after bioconjugation.
    Azzaroni O; Mir M; Knoll W
    J Phys Chem B; 2007 Dec; 111(48):13499-503. PubMed ID: 17997545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophoretic behavior of streptavidin complexed to a biotinylated probe: a functional screening assay for biotin-binding proteins.
    Humbert N; Zocchi A; Ward TR
    Electrophoresis; 2005 Jan; 26(1):47-52. PubMed ID: 15624156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.