These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 38277177)

  • 1. Rigidifying of the internal dynamics of amyloid-beta fibrils generated in the presence of synaptic plasma vesicles.
    Vugmeyster L; Au DF; Frazier B; Qiang W; Ostrovsky D
    Phys Chem Chem Phys; 2024 Feb; 26(6):5466-5478. PubMed ID: 38277177
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Cross-Seeding of Wild-Type Amyloid-β
    Rodgers A; Sawaged M; Ostrovsky D; Vugmeyster L
    J Phys Chem B; 2023 Apr; 127(13):2887-2899. PubMed ID: 36952330
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation.
    Vugmeyster L; Fai Au D; Smith MC; Ostrovsky D
    Chemphyschem; 2022 Feb; 23(3):e202100709. PubMed ID: 34837296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental constraints on quaternary structure in Alzheimer's beta-amyloid fibrils.
    Petkova AT; Yau WM; Tycko R
    Biochemistry; 2006 Jan; 45(2):498-512. PubMed ID: 16401079
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils.
    Au DF; Ostrovsky D; Fu R; Vugmeyster L
    J Biol Chem; 2019 Apr; 294(15):5840-5853. PubMed ID: 30737281
    [TBL] [Abstract][Full Text] [Related]  

  • 6. N-terminal lipid conjugation of amyloid β(1-40) leads to the formation of highly ordered N-terminally extended fibrils.
    Adler J; Scheidt HA; Lemmnitzer K; Krueger M; Huster D
    Phys Chem Chem Phys; 2017 Jan; 19(3):1839-1846. PubMed ID: 28000812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MOMD Analysis of NMR Line Shapes from Aβ-Amyloid Fibrils: A New Tool for Characterizing Molecular Environments in Protein Aggregates.
    Meirovitch E; Liang Z; Freed JH
    J Phys Chem B; 2018 May; 122(18):4793-4801. PubMed ID: 29624402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deuteron Quadrupolar Chemical Exchange Saturation Transfer (Q-CEST) Solid-State NMR for Static Powder Samples: Approach and Applications to Amyloid-β Fibrils.
    Vugmeyster L; Ostrovsky D; Fu R
    Chemphyschem; 2020 Feb; 21(3):220-231. PubMed ID: 31805217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deuteron Solid-State NMR Relaxation Measurements Reveal Two Distinct Conformational Exchange Processes in the Disordered N-Terminal Domain of Amyloid-β Fibrils.
    Vugmeyster L; Au DF; Ostrovsky D; Fu R
    Chemphyschem; 2019 Jul; 20(13):1680-1689. PubMed ID: 31087613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast Motions of Key Methyl Groups in Amyloid-β Fibrils.
    Vugmeyster L; Ostrovsky D; Clark MA; Falconer IB; Hoatson GL; Qiang W
    Biophys J; 2016 Nov; 111(10):2135-2148. PubMed ID: 27851938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexibility and Solvation of Amyloid-β Hydrophobic Core.
    Vugmeyster L; Clark MA; Falconer IB; Ostrovsky D; Gantz D; Qiang W; Hoatson GL
    J Biol Chem; 2016 Aug; 291(35):18484-95. PubMed ID: 27402826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular-level examination of Cu2+ binding structure for amyloid fibrils of 40-residue Alzheimer's β by solid-state NMR spectroscopy.
    Parthasarathy S; Long F; Miller Y; Xiao Y; McElheny D; Thurber K; Ma B; Nussinov R; Ishii Y
    J Am Chem Soc; 2011 Mar; 133(10):3390-400. PubMed ID: 21341665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antiparallel β-sheet architecture in Iowa-mutant β-amyloid fibrils.
    Qiang W; Yau WM; Luo Y; Mattson MP; Tycko R
    Proc Natl Acad Sci U S A; 2012 Mar; 109(12):4443-8. PubMed ID: 22403062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Alzheimer's amyloid-β(1-42) peptide forms off-pathway oligomers and fibrils that are distinguished structurally by intermolecular organization.
    Tay WM; Huang D; Rosenberry TL; Paravastu AK
    J Mol Biol; 2013 Jul; 425(14):2494-508. PubMed ID: 23583777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solvent-Driven Dynamical Crossover in the Phenylalanine Side-Chain from the Hydrophobic Core of Amyloid Fibrils Detected by
    Vugmeyster L; Ostrovsky D; Hoatson GL; Qiang W; Falconer IB
    J Phys Chem B; 2017 Aug; 121(30):7267-7275. PubMed ID: 28699757
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supramolecular structural constraints on Alzheimer's beta-amyloid fibrils from electron microscopy and solid-state nuclear magnetic resonance.
    Antzutkin ON; Leapman RD; Balbach JJ; Tycko R
    Biochemistry; 2002 Dec; 41(51):15436-50. PubMed ID: 12484785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Small liposomes accelerate the fibrillation of amyloid β (1-40).
    Terakawa MS; Yagi H; Adachi M; Lee YH; Goto Y
    J Biol Chem; 2015 Jan; 290(2):815-26. PubMed ID: 25406316
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photoaffinity cross-linking of Alzheimer's disease amyloid fibrils reveals interstrand contact regions between assembled beta-amyloid peptide subunits.
    Egnaczyk GF; Greis KD; Stimson ER; Maggio JE
    Biochemistry; 2001 Oct; 40(39):11706-14. PubMed ID: 11570871
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seeded growth of beta-amyloid fibrils from Alzheimer's brain-derived fibrils produces a distinct fibril structure.
    Paravastu AK; Qahwash I; Leapman RD; Meredith SC; Tycko R
    Proc Natl Acad Sci U S A; 2009 May; 106(18):7443-8. PubMed ID: 19376973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation at Ser
    Hu ZW; Ma MR; Chen YX; Zhao YF; Qiang W; Li YM
    J Biol Chem; 2017 Feb; 292(7):2611-2623. PubMed ID: 28031462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.