BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38277249)

  • 1. Compositionally Equivariant Representation Learning.
    Liu X; Sanchez P; Thermos S; O'Neil AQ; Tsaftaris SA
    IEEE Trans Med Imaging; 2024 Jun; 43(6):2169-2179. PubMed ID: 38277249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
    Chaitanya K; Erdil E; Karani N; Konukoglu E
    Med Image Anal; 2023 Jul; 87():102792. PubMed ID: 37054649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Disentangled representation learning in cardiac image analysis.
    Chartsias A; Joyce T; Papanastasiou G; Semple S; Williams M; Newby DE; Dharmakumar R; Tsaftaris SA
    Med Image Anal; 2019 Dec; 58():101535. PubMed ID: 31351230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. LMISA: A lightweight multi-modality image segmentation network via domain adaptation using gradient magnitude and shape constraint.
    Jafari M; Francis S; Garibaldi JM; Chen X
    Med Image Anal; 2022 Oct; 81():102536. PubMed ID: 35870297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Semi-supervised COVID-19 CT image segmentation using deep generative models.
    Zammit J; Fung DLX; Liu Q; Leung CK; Hu P
    BMC Bioinformatics; 2022 Aug; 23(Suppl 7):343. PubMed ID: 35974325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning Deep Representations of Cardiac Structures for 4D Cine MRI Image Segmentation through Semi-Supervised Learning.
    Hasan SMK; Linte CA
    Appl Sci (Basel); 2022 Dec; 12(23):. PubMed ID: 37125242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hybrid dual mean-teacher network with double-uncertainty guidance for semi-supervised segmentation of magnetic resonance images.
    Zhu J; Bolsterlee B; Chow BVY; Song Y; Meijering E
    Comput Med Imaging Graph; 2024 Jul; 115():102383. PubMed ID: 38643551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards annotation-efficient segmentation via image-to-image translation.
    Vorontsov E; Molchanov P; Gazda M; Beckham C; Kautz J; Kadoury S
    Med Image Anal; 2022 Nov; 82():102624. PubMed ID: 36208571
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutual consistency learning for semi-supervised medical image segmentation.
    Wu Y; Ge Z; Zhang D; Xu M; Zhang L; Xia Y; Cai J
    Med Image Anal; 2022 Oct; 81():102530. PubMed ID: 35839737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A robust and interpretable deep learning framework for multi-modal registration via keypoints.
    Wang AQ; Yu EM; Dalca AV; Sabuncu MR
    Med Image Anal; 2023 Dec; 90():102962. PubMed ID: 37769550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-supervised segmentation of lesion from breast ultrasound images with attentional generative adversarial network.
    Han L; Huang Y; Dou H; Wang S; Ahamad S; Luo H; Liu Q; Fan J; Zhang J
    Comput Methods Programs Biomed; 2020 Jun; 189():105275. PubMed ID: 31978805
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
    Burton W; Myers C; Rullkoetter P
    Comput Methods Programs Biomed; 2020 Jun; 189():105328. PubMed ID: 31958580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A deep learning based framework for the registration of three dimensional multi-modal medical images of the head.
    Islam KT; Wijewickrema S; O'Leary S
    Sci Rep; 2021 Jan; 11(1):1860. PubMed ID: 33479305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PyMIC: A deep learning toolkit for annotation-efficient medical image segmentation.
    Wang G; Luo X; Gu R; Yang S; Qu Y; Zhai S; Zhao Q; Li K; Zhang S
    Comput Methods Programs Biomed; 2023 Apr; 231():107398. PubMed ID: 36773591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Effective MR-Guided CT Network Training for Segmenting Prostate in CT Images.
    Yang W; Shi Y; Park SH; Yang M; Gao Y; Shen D
    IEEE J Biomed Health Inform; 2020 Aug; 24(8):2278-2291. PubMed ID: 31841426
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where Position Matters-Deep-Learning-Driven Normalization and Coregistration of Computed Tomography in the Postoperative Analysis of Deep Brain Stimulation.
    Reisert M; Sajonz BEA; Brugger TS; Reinacher PC; Russe MF; Kellner E; Skibbe H; Coenen VA
    Neuromodulation; 2023 Feb; 26(2):302-309. PubMed ID: 36424266
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Object recognition in medical images via anatomy-guided deep learning.
    Jin C; Udupa JK; Zhao L; Tong Y; Odhner D; Pednekar G; Nag S; Lewis S; Poole N; Mannikeri S; Govindasamy S; Singh A; Camaratta J; Owens S; Torigian DA
    Med Image Anal; 2022 Oct; 81():102527. PubMed ID: 35830745
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Supervised and Unsupervised Deep Learning Methods for Medical Image Synthesis between Computed Tomography and Magnetic Resonance Images.
    Li Y; Li W; Xiong J; Xia J; Xie Y
    Biomed Res Int; 2020; 2020():5193707. PubMed ID: 33204701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quality-driven deep cross-supervised learning network for semi-supervised medical image segmentation.
    Zhang Z; Zhou H; Shi X; Ran R; Tian C; Zhou F
    Comput Biol Med; 2024 Jun; 176():108609. PubMed ID: 38772056
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning to segment pelvic bones: large-scale CT datasets and baseline models.
    Liu P; Han H; Du Y; Zhu H; Li Y; Gu F; Xiao H; Li J; Zhao C; Xiao L; Wu X; Zhou SK
    Int J Comput Assist Radiol Surg; 2021 May; 16(5):749-756. PubMed ID: 33864189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.