These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 38277275)

  • 21. Benchmarking structural evolution methods for training of machine learned interatomic potentials.
    Waters MJ; Rondinelli JM
    J Phys Condens Matter; 2022 Jul; 34(38):. PubMed ID: 35797983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Machine learning accelerated random structure searching: Application to yttrium superhydrides.
    Charraud JB; Geneste G; Torrent M; Maillet JB
    J Chem Phys; 2022 May; 156(20):204102. PubMed ID: 35649880
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure-based sampling and self-correcting machine learning for accurate calculations of potential energy surfaces and vibrational levels.
    Dral PO; Owens A; Yurchenko SN; Thiel W
    J Chem Phys; 2017 Jun; 146(24):244108. PubMed ID: 28668062
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient Crystal Structure Prediction for Structurally Related Molecules with Accurate and Transferable Tailor-Made Force Fields.
    Mattei A; Hong RS; Dietrich H; Firaha D; Helfferich J; Liu YM; Sasikumar K; Abraham NS; Miglani Bhardwaj R; Neumann MA; Sheikh AY
    J Chem Theory Comput; 2022 Sep; 18(9):5725-5738. PubMed ID: 35930763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. First-Principles Multiscale Modeling of Mechanical Properties in Graphene/Borophene Heterostructures Empowered by Machine-Learning Interatomic Potentials.
    Mortazavi B; Silani M; Podryabinkin EV; Rabczuk T; Zhuang X; Shapeev AV
    Adv Mater; 2021 Sep; 33(35):e2102807. PubMed ID: 34296779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Constructing and Evaluating Machine-Learned Interatomic Potentials for Li-Based Disordered Rocksalts.
    Choyal V; Sagar N; Sai Gautam G
    J Chem Theory Comput; 2024 Jun; 20(11):4844-4856. PubMed ID: 38787289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning for the structure-energy-property landscapes of molecular crystals.
    Musil F; De S; Yang J; Campbell JE; Day GM; Ceriotti M
    Chem Sci; 2018 Feb; 9(5):1289-1300. PubMed ID: 29675175
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Extracting Crystal Chemistry from Amorphous Carbon Structures.
    Deringer VL; Csányi G; Proserpio DM
    Chemphyschem; 2017 Apr; 18(8):873-877. PubMed ID: 28271606
    [TBL] [Abstract][Full Text] [Related]  

  • 29. General computational algorithms for ab initio crystal structure prediction for organic molecules.
    Pantelides CC; Adjiman CS; Kazantsev AV
    Top Curr Chem; 2014; 345():25-58. PubMed ID: 24500330
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A general force field by machine learning on experimental crystal structures. Calculations of intermolecular Gibbs energy with FlexCryst.
    Hofmann DWM; Kuleshova LN
    Acta Crystallogr A Found Adv; 2023 Mar; 79(Pt 2):132-144. PubMed ID: 36862039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate prediction of grain boundary structures and energetics in CdTe: a machine-learning potential approach.
    Yokoi T; Adachi K; Iwase S; Matsunaga K
    Phys Chem Chem Phys; 2022 Jan; 24(3):1620-1629. PubMed ID: 34951419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Crystal Structure Prediction of Binary Alloys via Deep Potential.
    Wang H; Zhang Y; Zhang L; Wang H
    Front Chem; 2020; 8():589795. PubMed ID: 33330377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Convergence Properties of Crystal Structure Prediction by Quasi-Random Sampling.
    Case DH; Campbell JE; Bygrave PJ; Day GM
    J Chem Theory Comput; 2016 Feb; 12(2):910-24. PubMed ID: 26716361
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Distance Matrix-Based Crystal Structure Prediction Using Evolutionary Algorithms.
    Hu J; Yang W; Dilanga Siriwardane EM
    J Phys Chem A; 2020 Dec; 124(51):10909-10919. PubMed ID: 33300340
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Davis Computational Spectroscopy Workflow-From Structure to Spectra.
    Cavalcante LSR; Daemen LL; Goldman N; Moulé AJ
    J Chem Inf Model; 2021 Sep; 61(9):4486-4496. PubMed ID: 34449225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Minimal Basis Set Hartree-Fock Corrected with Atom-Centered Potentials for Molecular Crystal Modeling and Crystal Structure Prediction.
    Tuca E; DiLabio G; Otero-de-la-Roza A
    J Chem Inf Model; 2022 Sep; 62(17):4107-4121. PubMed ID: 35980964
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Look Inside the Black Box of Machine Learning Photodynamics Simulations.
    Li J; Lopez SA
    Acc Chem Res; 2022 Jul; 55(14):1972-1984. PubMed ID: 35796602
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On-the-Fly Active Learning of Interatomic Potentials for Large-Scale Atomistic Simulations.
    Jinnouchi R; Miwa K; Karsai F; Kresse G; Asahi R
    J Phys Chem Lett; 2020 Sep; 11(17):6946-6955. PubMed ID: 32787192
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accurate and efficient representation of intramolecular energy in ab initio generation of crystal structures. II. Smoothed intramolecular potentials.
    Sugden IJ; Adjiman CS; Pantelides CC
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2019 Jun; 75(Pt 3):423-433. PubMed ID: 32830664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.