These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38277580)

  • 1. Suppression of Richtmyer-Meshkov Instability via Special Pairs of Shocks and Phase Transitions.
    Schill WJ; Armstrong MR; Nguyen JH; Sterbentz DM; White DA; Benedict LX; Rieben RN; Hoff A; Lorenzana HE; Belof JL; La Lone BM; Staska MD
    Phys Rev Lett; 2024 Jan; 132(2):024001. PubMed ID: 38277580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vortex core dynamics and singularity formations in incompressible Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 2):026304. PubMed ID: 16605451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the Richtmyer-Meshkov instability due to a density transition layer at the interface.
    Sano T; Ishigure K; Cobos-Campos F
    Phys Rev E; 2020 Jul; 102(1-1):013203. PubMed ID: 32794946
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Critical magnetic field strength for suppression of the Richtmyer-Meshkov instability in plasmas.
    Sano T; Inoue T; Nishihara K
    Phys Rev Lett; 2013 Nov; 111(20):205001. PubMed ID: 24289690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of surface tension and viscosity on the growth rates of Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):055302. PubMed ID: 20365034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Richtmyer-Meshkov instability: theory of linear and nonlinear evolution.
    Nishihara K; Wouchuk JG; Matsuoka C; Ishizaki R; Zhakhovsky VV
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1769-807. PubMed ID: 20211883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Explicit expressions for the evolution of single-mode Rayleigh-Taylor and Richtmyer-Meshkov instabilities at arbitrary Atwood numbers.
    Mikaelian KO
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Feb; 67(2 Pt 2):026319. PubMed ID: 12636812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonlinear evolution of an interface in the Richtmyer-Meshkov instability.
    Matsuoka C; Nishihara K; Fukuda Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Mar; 67(3 Pt 2):036301. PubMed ID: 12689159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measurement of a Richtmyer-Meshkov Instability at an Air-SF_{6} Interface in a Semiannular Shock Tube.
    Ding J; Si T; Yang J; Lu X; Zhai Z; Luo X
    Phys Rev Lett; 2017 Jul; 119(1):014501. PubMed ID: 28731767
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of the Richtmyer-Meshkov instability to infer yield stress at high-energy densities.
    Dimonte G; Terrones G; Cherne FJ; Germann TC; Dupont V; Kadau K; Buttler WT; Oro DM; Morris C; Preston DL
    Phys Rev Lett; 2011 Dec; 107(26):264502. PubMed ID: 22243159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anisotropic evolutions of the magnetohydrodynamic Richtmyer-Meshkov instability induced by a converging shock.
    Qin J; Dong G
    Phys Rev E; 2023 Nov; 108(5-2):055201. PubMed ID: 38115407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Viscous Rayleigh-Taylor and Richtmyer-Meshkov instabilities in the presence of a horizontal magnetic field.
    Sun YB; Wang C
    Phys Rev E; 2020 May; 101(5-1):053110. PubMed ID: 32575244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density dependence of a Zufiria-type model for Rayleigh-Taylor bubble fronts.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 2):045301. PubMed ID: 15600452
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vortex model and simulations for Rayleigh-Taylor and Richtmyer-Meshkov instabilities.
    Sohn SI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Mar; 69(3 Pt 2):036703. PubMed ID: 15089438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Some peculiar features of hydrodynamic instability development.
    Meshkov E
    Philos Trans A Math Phys Eng Sci; 2013 Nov; 371(2003):20120288. PubMed ID: 24146012
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of the Atwood number on the Richtmyer-Meshkov instability in elastic-plastic media.
    Chen Q; Li L; Zhang Y; Tian B
    Phys Rev E; 2019 May; 99(5-1):053102. PubMed ID: 31212447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supernova, nuclear synthesis, fluid instabilities, and interfacial mixing.
    Abarzhi SI; Bhowmick AK; Naveh A; Pandian A; Swisher NC; Stellingwerf RF; Arnett WD
    Proc Natl Acad Sci U S A; 2019 Sep; 116(37):18184-18192. PubMed ID: 30478062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rayleigh-Taylor instability of crystallization waves at the superfluid-solid 4He interface.
    Burmistrov SN; Dubovskii LB; Tsymbalenko VL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051606. PubMed ID: 19518466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reduced mixing in inertial confinement fusion with early-time interface acceleration.
    Weber CR; Clark DS; Casey DT; Hall GN; Jones O; Landen O; Pak A; Smalyuk VA
    Phys Rev E; 2023 Aug; 108(2):L023202. PubMed ID: 37723759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basic hydrodynamics of Richtmyer-Meshkov-type growth and oscillations in the inertial confinement fusion-relevant conditions.
    Aglitskiy Y; Velikovich AL; Karasik M; Metzler N; Zalesak ST; Schmitt AJ; Phillips L; Gardner JH; Serlin V; Weaver JL; Obenschain SP
    Philos Trans A Math Phys Eng Sci; 2010 Apr; 368(1916):1739-68. PubMed ID: 20211882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.