These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Development of a displacement- and frequency-noise-free interferometer in a 3D configuration for gravitational wave detection. Kokeyama K; Sato S; Nishizawa A; Kawamura S; Chen Y; Sugamoto A Phys Rev Lett; 2009 Oct; 103(17):171101. PubMed ID: 19905742 [TBL] [Abstract][Full Text] [Related]
5. Gravitational wave detection using laser interferometry beyond the standard quantum limit. Heurs M Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977 [TBL] [Abstract][Full Text] [Related]
6. Demonstration of displacement- and frequency-noise-free laser interferometry using bidirectional Mach-Zehnder interferometers. Sato S; Kokeyama K; Ward RL; Kawamura S; Chen Y; Pai A; Somiya K Phys Rev Lett; 2007 Apr; 98(14):141101. PubMed ID: 17501262 [TBL] [Abstract][Full Text] [Related]
7. Phase control of squeezed vacuum states of light in gravitational wave detectors. Dooley KL; Schreiber E; Vahlbruch H; Affeldt C; Leong JR; Wittel H; Grote H Opt Express; 2015 Apr; 23(7):8235-45. PubMed ID: 25968662 [TBL] [Abstract][Full Text] [Related]
8. Scattering loss in precision metrology due to mirror roughness. Drori Y; Eichholz J; Edo T; Yamamoto H; Enomoto Y; Venugopalan G; Arai K; Adhikari RX J Opt Soc Am A Opt Image Sci Vis; 2022 May; 39(5):969-978. PubMed ID: 36215458 [TBL] [Abstract][Full Text] [Related]
9. Quantum Measurement Theory in Gravitational-Wave Detectors. Danilishin SL; Khalili FY Living Rev Relativ; 2012; 15(1):5. PubMed ID: 28179836 [TBL] [Abstract][Full Text] [Related]
10. Interferometers for displacement-noise-free gravitational-wave detection. Chen Y; Pai A; Somiya K; Kawamura S; Sato S; Kokeyama K; Ward RL; Goda K; Mikhailov EE Phys Rev Lett; 2006 Oct; 97(15):151103. PubMed ID: 17155314 [TBL] [Abstract][Full Text] [Related]
11. First Demonstration of 6 dB Quantum Noise Reduction in a Kilometer Scale Gravitational Wave Observatory. Lough J; Schreiber E; Bergamin F; Grote H; Mehmet M; Vahlbruch H; Affeldt C; Brinkmann M; Bisht A; Kringel V; Lück H; Mukund N; Nadji S; Sorazu B; Strain K; Weinert M; Danzmann K Phys Rev Lett; 2021 Jan; 126(4):041102. PubMed ID: 33576646 [TBL] [Abstract][Full Text] [Related]
12. Interferometer techniques for gravitational-wave detection. Bond C; Brown D; Freise A; Strain KA Living Rev Relativ; 2016; 19(1):3. PubMed ID: 28260967 [TBL] [Abstract][Full Text] [Related]
13. High power and ultra-low-noise photodetector for squeezed-light enhanced gravitational wave detectors. Grote H; Weinert M; Adhikari RX; Affeldt C; Kringel V; Leong J; Lough J; Lück H; Schreiber E; Strain KA; Vahlbruch H; Wittel H Opt Express; 2016 Sep; 24(18):20107-18. PubMed ID: 27607619 [TBL] [Abstract][Full Text] [Related]
14. Quantum locking of mirrors in interferometers. Courty JM; Heidmann A; Pinard M Phys Rev Lett; 2003 Feb; 90(8):083601. PubMed ID: 12633426 [TBL] [Abstract][Full Text] [Related]
15. Measurement of quantum back action in the audio band at room temperature. Cripe J; Aggarwal N; Lanza R; Libson A; Singh R; Heu P; Follman D; Cole GD; Mavalvala N; Corbitt T Nature; 2019 Apr; 568(7752):364-367. PubMed ID: 30911169 [TBL] [Abstract][Full Text] [Related]
16. Characterization and evasion of backscattered light in the squeezed-light enhanced gravitational wave interferometer GEO 600. Bergamin F; Lough J; Schreiber E; Grote H; Mehmet M; Vahlbruch H; Affeldt C; Andric T; Bisht A; Brinkmann M; Kringel V; Lück H; Mukund N; Nadji S; Sorazu B; Strain K; Weinert M; Danzmann K Opt Express; 2023 Nov; 31(23):38443-38456. PubMed ID: 38017951 [TBL] [Abstract][Full Text] [Related]