These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38277601)

  • 21. Audio-Band Frequency-Dependent Squeezing for Gravitational-Wave Detectors.
    Oelker E; Isogai T; Miller J; Tse M; Barsotti L; Mavalvala N; Evans M
    Phys Rev Lett; 2016 Jan; 116(4):041102. PubMed ID: 26871318
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low Mechanical Loss TiO_{2}:GeO_{2} Coatings for Reduced Thermal Noise in Gravitational Wave Interferometers.
    Vajente G; Yang L; Davenport A; Fazio M; Ananyeva A; Zhang L; Billingsley G; Prasai K; Markosyan A; Bassiri R; Fejer MM; Chicoine M; Schiettekatte F; Menoni CS
    Phys Rev Lett; 2021 Aug; 127(7):071101. PubMed ID: 34459624
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Beating the Standard Sensitivity-Bandwidth Limit of Cavity-Enhanced Interferometers with Internal Squeezed-Light Generation.
    Korobko M; Kleybolte L; Ast S; Miao H; Chen Y; Schnabel R
    Phys Rev Lett; 2017 Apr; 118(14):143601. PubMed ID: 28430507
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Frequency-Dependent Squeezed Vacuum Source for Broadband Quantum Noise Reduction in Advanced Gravitational-Wave Detectors.
    Zhao Y; Aritomi N; Capocasa E; Leonardi M; Eisenmann M; Guo Y; Polini E; Tomura A; Arai K; Aso Y; Huang YC; Lee RK; Lück H; Miyakawa O; Prat P; Shoda A; Tacca M; Takahashi R; Vahlbruch H; Vardaro M; Wu CM; Barsuglia M; Flaminio R
    Phys Rev Lett; 2020 May; 124(17):171101. PubMed ID: 32412296
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Loss-tolerant and quantum-enhanced interferometer by reversed squeezing processes.
    Tian L; Yao W; Wu Y; Wang Q; Shen H; Zheng Y; Peng K
    Opt Lett; 2023 Aug; 48(15):3909-3912. PubMed ID: 37527080
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Frequency-Dependent Squeezing for Advanced LIGO.
    McCuller L; Whittle C; Ganapathy D; Komori K; Tse M; Fernandez-Galiana A; Barsotti L; Fritschel P; MacInnis M; Matichard F; Mason K; Mavalvala N; Mittleman R; Yu H; Zucker ME; Evans M
    Phys Rev Lett; 2020 May; 124(17):171102. PubMed ID: 32412252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitigating Quantum Decoherence in Force Sensors by Internal Squeezing.
    Korobko M; Südbeck J; Steinlechner S; Schnabel R
    Phys Rev Lett; 2023 Oct; 131(14):143603. PubMed ID: 37862640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Displacement- and timing-noise-free gravitational-wave detection.
    Chen Y; Kawamura S
    Phys Rev Lett; 2006 Jun; 96(23):231102. PubMed ID: 16803365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Advanced technologies for future ground-based, laser-interferometric gravitational wave detectors.
    Hammond G; Hild S; Pitkin M
    J Mod Opt; 2014 Dec; 61(sup1):S10-S45. PubMed ID: 25705087
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of mirror coatings for gravitational-wave detectors.
    Steinlechner J
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661974
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Two-Carrier Scheme: Evading the 3 dB Quantum Penalty of Heterodyne Readout in Gravitational-Wave Detectors.
    Zhang T; Jones P; Smetana J; Miao H; Martynov D; Freise A; Ballmer SW
    Phys Rev Lett; 2021 Jun; 126(22):221301. PubMed ID: 34152184
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Observation of Squeezed States of Light in Higher-Order Hermite-Gaussian Modes with a Quantum Noise Reduction of up to 10 dB.
    Heinze J; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Feb; 128(8):083606. PubMed ID: 35275673
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optically trapped mirror for reaching the standard quantum limit.
    Matsumoto N; Michimura Y; Aso Y; Tsubono K
    Opt Express; 2014 Jun; 22(11):12915-23. PubMed ID: 24921489
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The elusive Heisenberg limit in quantum-enhanced metrology.
    Demkowicz-Dobrzański R; Kołodyński J; Guţă M
    Nat Commun; 2012; 3():1063. PubMed ID: 22990859
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Interferometer Techniques for Gravitational-Wave Detection.
    Freise A; Strain K
    Living Rev Relativ; 2010; 13(1):1. PubMed ID: 28163612
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Overcoming the Standard Quantum Limit in Gravitational Wave Detectors Using Spin Systems with a Negative Effective Mass.
    Khalili FY; Polzik ES
    Phys Rev Lett; 2018 Jul; 121(3):031101. PubMed ID: 30085801
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Optical phase estimation in the presence of phase diffusion.
    Genoni MG; Olivares S; Paris MG
    Phys Rev Lett; 2011 Apr; 106(15):153603. PubMed ID: 21568559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Backaction amplification and quantum limits in optomechanical measurements.
    Verlot P; Tavernarakis A; Briant T; Cohadon PF; Heidmann A
    Phys Rev Lett; 2010 Apr; 104(13):133602. PubMed ID: 20481885
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Squeezed States of Light for Future Gravitational Wave Detectors at a Wavelength of 1550 nm.
    Meylahn F; Willke B; Vahlbruch H
    Phys Rev Lett; 2022 Sep; 129(12):121103. PubMed ID: 36179187
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear atom interferometer surpasses classical precision limit.
    Gross C; Zibold T; Nicklas E; Estève J; Oberthaler MK
    Nature; 2010 Apr; 464(7292):1165-9. PubMed ID: 20357767
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.