These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38277695)
1. Artificial Cells and HepG2 Cells in 3D-Bioprinted Arrangements. Westensee IN; Paffen LJMM; Pendlmayr S; De Dios Andres P; Ramos Docampo MA; Städler B Adv Healthc Mater; 2024 May; 13(12):e2303699. PubMed ID: 38277695 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting of bicellular liver lobule-mimetic structures via microextrusion of cellulose nanocrystal-incorporated shear-thinning bioink. Wu Y; Wenger A; Golzar H; Tang XS Sci Rep; 2020 Nov; 10(1):20648. PubMed ID: 33244046 [TBL] [Abstract][Full Text] [Related]
3. Coaxial extrusion bioprinting of 3D microfibrous constructs with cell-favorable gelatin methacryloyl microenvironments. Liu W; Zhong Z; Hu N; Zhou Y; Maggio L; Miri AK; Fragasso A; Jin X; Khademhosseini A; Zhang YS Biofabrication; 2018 Jan; 10(2):024102. PubMed ID: 29176035 [TBL] [Abstract][Full Text] [Related]
4. 3D bioprinting of a gelatin-alginate hydrogel for tissue-engineered hair follicle regeneration. Kang D; Liu Z; Qian C; Huang J; Zhou Y; Mao X; Qu Q; Liu B; Wang J; Hu Z; Miao Y Acta Biomater; 2023 Jul; 165():19-30. PubMed ID: 35288311 [TBL] [Abstract][Full Text] [Related]
5. Myoblast 3D bioprinting to burst in vitro skeletal muscle differentiation. Ronzoni FL; Aliberti F; Scocozza F; Benedetti L; Auricchio F; Sampaolesi M; Cusella G; Redwan IN; Ceccarelli G; Conti M J Tissue Eng Regen Med; 2022 May; 16(5):484-495. PubMed ID: 35246958 [TBL] [Abstract][Full Text] [Related]
6. Engineering bioprintable alginate/gelatin composite hydrogels with tunable mechanical and cell adhesive properties to modulate tumor spheroid growth kinetics. Jiang T; Munguia-Lopez JG; Gu K; Bavoux MM; Flores-Torres S; Kort-Mascort J; Grant J; Vijayakumar S; De Leon-Rodriguez A; Ehrlicher AJ; Kinsella JM Biofabrication; 2019 Dec; 12(1):015024. PubMed ID: 31404917 [TBL] [Abstract][Full Text] [Related]
7. Fish scale containing alginate dialdehyde-gelatin bioink for bone tissue engineering. Kara Özenler A; Distler T; Tihminlioglu F; Boccaccini AR Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36706451 [TBL] [Abstract][Full Text] [Related]
8. Core-shell bioprinting of vascularized Taymour R; Chicaiza-Cabezas NA; Gelinsky M; Lode A Biofabrication; 2022 Sep; 14(4):. PubMed ID: 36070706 [No Abstract] [Full Text] [Related]
9. The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour Souza A; Kevin M; Rodriguez BJ; Reynaud EG Biomed Mater; 2024 Jun; 19(4):. PubMed ID: 38810635 [TBL] [Abstract][Full Text] [Related]
10. Nanofibrous polyelectrolyte complex incorporated BSA-alginate composite bioink for 3D bioprinting of bone mimicking constructs. Chrungoo S; Bharadwaj T; Verma D Int J Biol Macromol; 2024 May; 266(Pt 1):131123. PubMed ID: 38537853 [TBL] [Abstract][Full Text] [Related]
11. Engineering a morphogenetically active hydrogel for bioprinting of bioartificial tissue derived from human osteoblast-like SaOS-2 cells. Neufurth M; Wang X; Schröder HC; Feng Q; Diehl-Seifert B; Ziebart T; Steffen R; Wang S; Müller WEG Biomaterials; 2014 Oct; 35(31):8810-8819. PubMed ID: 25047630 [TBL] [Abstract][Full Text] [Related]
12. In vitro and in vivo biocompatibility evaluation of a 3D bioprinted gelatin-sodium alginate/rat Schwann-cell scaffold. Wu Z; Li Q; Xie S; Shan X; Cai Z Mater Sci Eng C Mater Biol Appl; 2020 Apr; 109():110530. PubMed ID: 32228940 [TBL] [Abstract][Full Text] [Related]
14. Review of alginate-based hydrogel bioprinting for application in tissue engineering. Rastogi P; Kandasubramanian B Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105 [TBL] [Abstract][Full Text] [Related]
15. Development and evaluation of a multicomponent bioink consisting of alginate, gelatin, diethylaminoethyl cellulose and collagen peptide for 3D bioprinting of tissue construct for drug screening application. Geevarghese R; Somasekharan LT; Bhatt A; Kasoju N; Nair RP Int J Biol Macromol; 2022 May; 207():278-288. PubMed ID: 35257733 [TBL] [Abstract][Full Text] [Related]
16. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. Duan B; Hockaday LA; Kang KH; Butcher JT J Biomed Mater Res A; 2013 May; 101(5):1255-64. PubMed ID: 23015540 [TBL] [Abstract][Full Text] [Related]
17. Three-dimensional bioprinted BMSCs-laden highly adhesive artificial periosteum containing gelatin-dopamine and graphene oxide nanosheets promoting bone defect repair. Sun X; Yang J; Ma J; Wang T; Zhao X; Zhu D; Jin W; Zhang K; Sun X; Shen Y; Xie N; Yang F; Shang X; Li S; Zhou X; He C; Zhang D; Wang J Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36716493 [TBL] [Abstract][Full Text] [Related]
18. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677 [TBL] [Abstract][Full Text] [Related]
19. 3D Bioprinting of Carbohydrazide-Modified Gelatin into Microparticle-Suspended Oxidized Alginate for the Fabrication of Complex-Shaped Tissue Constructs. Heo DN; Alioglu MA; Wu Y; Ozbolat V; Ayan B; Dey M; Kang Y; Ozbolat IT ACS Appl Mater Interfaces; 2020 May; 12(18):20295-20306. PubMed ID: 32274920 [TBL] [Abstract][Full Text] [Related]
20. Egg white improves the biological properties of an alginate-methylcellulose bioink for 3D bioprinting of volumetric bone constructs. Liu S; Kilian D; Ahlfeld T; Hu Q; Gelinsky M Biofabrication; 2023 Feb; 15(2):. PubMed ID: 36735961 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]