These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
126 related articles for article (PubMed ID: 38277856)
1. Harnessing the anti-cancer potential of linamarin: A computational study on design and hydrolysis mechanisms of its derivatives. Liyanage SD; Gunasekera D; Ratnaweera CN J Mol Graph Model; 2024 May; 128():108716. PubMed ID: 38277856 [TBL] [Abstract][Full Text] [Related]
2. Fate in humans of dietary intake of cyanogenic glycosides from roots of sweet cassava consumed in Cuba. Hernández T; Lundquist P; Oliveira L; Pérez Cristiá R; Rodriguez E; Rosling H Nat Toxins; 1995; 3(2):114-7. PubMed ID: 7613736 [TBL] [Abstract][Full Text] [Related]
4. The adverse effects of long-term cassava (Manihot esculenta Crantz) consumption. Kamalu BP Int J Food Sci Nutr; 1995 Feb; 46(1):65-93. PubMed ID: 7712344 [TBL] [Abstract][Full Text] [Related]
5. Plant tissue analysis as a tool for predicting fertiliser needs for low cyanogenic glucoside levels in cassava roots: An assessment of its possible use. Imakumbili MLE; Semu E; Semoka JMR; Abass A; Mkamilo G PLoS One; 2020; 15(2):e0228641. PubMed ID: 32053630 [TBL] [Abstract][Full Text] [Related]
6. Engineering cyanogen synthesis and turnover in cassava (Manihot esculenta). Siritunga D; Sayre R Plant Mol Biol; 2004 Nov; 56(4):661-9. PubMed ID: 15630626 [TBL] [Abstract][Full Text] [Related]
7. Effect of ultrasonic pretreatment on eliminating cyanogenic glycosides and hydrogen cyanide in cassava. Zhong Y; Xu T; Ji S; Wu X; Zhao T; Li S; Zhang P; Li K; Lu B Ultrason Sonochem; 2021 Oct; 78():105742. PubMed ID: 34487981 [TBL] [Abstract][Full Text] [Related]
8. Activation and detoxification of cassava cyanogenic glucosides by the whitefly Bemisia tabaci. Easson MLAE; Malka O; Paetz C; Hojná A; Reichelt M; Stein B; van Brunschot S; Feldmesser E; Campbell L; Colvin J; Winter S; Morin S; Gershenzon J; Vassão DG Sci Rep; 2021 Jun; 11(1):13244. PubMed ID: 34168179 [TBL] [Abstract][Full Text] [Related]
9. A recycling pathway for cyanogenic glycosides evidenced by the comparative metabolic profiling in three cyanogenic plant species. Pičmanová M; Neilson EH; Motawia MS; Olsen CE; Agerbirk N; Gray CJ; Flitsch S; Meier S; Silvestro D; Jørgensen K; Sánchez-Pérez R; Møller BL; Bjarnholt N Biochem J; 2015 Aug; 469(3):375-89. PubMed ID: 26205491 [TBL] [Abstract][Full Text] [Related]
10. Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. Lei V; Amoa-Awua WK; Brimer L Int J Food Microbiol; 1999 Dec; 53(2-3):169-84. PubMed ID: 10634708 [TBL] [Abstract][Full Text] [Related]
11. A specific and sensitive method for the determination of linamarin in Urine. Carlsson L; Mlingi N; Ronquist G; Rosling H Nat Toxins; 1995; 3(5):378-82. PubMed ID: 8581323 [TBL] [Abstract][Full Text] [Related]
12. An efficient and high-yielding method for extraction and purification of linamarin from Cassava; Samanthi KAU; Welideniya DT; Acharige AD; Samarakoon SR; Rathnayaka RK; de Silva M; Perera SS; Pieris C; Wanninayake UK; Jayathilaka A; Karunaratne V; Amaratunga GAJ; Gunasekera DS Nat Prod Res; 2021 Nov; 35(21):4169-4172. PubMed ID: 32223339 [TBL] [Abstract][Full Text] [Related]
13. Evaluation of exposure to cyanogenic glycosides and potential hydrogen cyanide release in commercially available foods among the Korean population. Park H; Chung H; Choi S; Bahn YS; Son J Food Chem; 2024 Oct; 456():139872. PubMed ID: 38865818 [TBL] [Abstract][Full Text] [Related]
14. Comparative metabolism of linamarin and amygdalin in hamsters. Frakes RA; Sharma RP; Willhite CC Food Chem Toxicol; 1986 May; 24(5):417-20. PubMed ID: 3744195 [TBL] [Abstract][Full Text] [Related]
15. Metabolic fates in humans of linamarin in cassava flour ingested as stiff porridge. Carlsson L; Mlingi N; Juma A; Ronquist G; Rosling H Food Chem Toxicol; 1999 Apr; 37(4):307-12. PubMed ID: 10418947 [TBL] [Abstract][Full Text] [Related]
16. Low cyanide exposure from consumption of cassava in Dar es Salaam, Tanzania. Mlingi N; Abrahamsson M; Yuen J; Gebre-Medhin M; Rosling H Nat Toxins; 1998; 6(2):67-72. PubMed ID: 9888632 [TBL] [Abstract][Full Text] [Related]
17. New chemiluminescence assay for linamarin. Ruengprapavut S; Chulavatnatol M IUBMB Life; 1999 Aug; 48(2):219-23. PubMed ID: 10794601 [TBL] [Abstract][Full Text] [Related]
18. Straightforward rapid spectrophotometric quantification of total cyanogenic glycosides in fresh and processed cassava products. Tivana LD; Da Cruz Francisco J; Zelder F; Bergenståhl B; Dejmek P Food Chem; 2014 Sep; 158():20-7. PubMed ID: 24731309 [TBL] [Abstract][Full Text] [Related]
19. Genetic screening identifies cyanogenesis-deficient mutants of Lotus japonicus and reveals enzymatic specificity in hydroxynitrile glucoside metabolism. Takos A; Lai D; Mikkelsen L; Abou Hachem M; Shelton D; Motawia MS; Olsen CE; Wang TL; Martin C; Rook F Plant Cell; 2010 May; 22(5):1605-19. PubMed ID: 20453117 [TBL] [Abstract][Full Text] [Related]
20. Neurotoxic effect of linamarin in rats associated with cassava (Manihot esculenta Crantz) consumption. Rivadeneyra-Domínguez E; Vázquez-Luna A; Rodríguez-Landa JF; Díaz-Sobac R Food Chem Toxicol; 2013 Sep; 59():230-5. PubMed ID: 23778051 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]