These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38277882)

  • 1. Frequency selectivity in monkey auditory nerve studied with suprathreshold multicomponent stimuli.
    Joris PX; Verschooten E; Mc Laughlin M; Versteegh C; van der Heijden M
    Hear Res; 2024 Mar; 443():108964. PubMed ID: 38277882
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Frequency selectivity in Old-World monkeys corroborates sharp cochlear tuning in humans.
    Joris PX; Bergevin C; Kalluri R; Mc Laughlin M; Michelet P; van der Heijden M; Shera CA
    Proc Natl Acad Sci U S A; 2011 Oct; 108(42):17516-20. PubMed ID: 21987783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Frequency selectivity in the auditory periphery: similarities between damaged and developing ears.
    Walsh EJ; McGee J
    Am J Otolaryngol; 1990; 11(1):23-32. PubMed ID: 2321707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Threshold tuning curves of chinchilla auditory nerve fibers. II. Dependence on spontaneous activity and relation to cochlear nonlinearity.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2899-906. PubMed ID: 18753325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory function in normal-hearing, noise-exposed human ears.
    Stamper GC; Johnson TA
    Ear Hear; 2015; 36(2):172-84. PubMed ID: 25350405
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations.
    Temchin AN; Rich NC; Ruggero MA
    J Neurophysiol; 2008 Nov; 100(5):2889-98. PubMed ID: 18701751
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mammalian behavior and physiology converge to confirm sharper cochlear tuning in humans.
    Sumner CJ; Wells TT; Bergevin C; Sollini J; Kreft HA; Palmer AR; Oxenham AJ; Shera CA
    Proc Natl Acad Sci U S A; 2018 Oct; 115(44):11322-11326. PubMed ID: 30322908
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shapes of cat auditory nerve fiber tuning curves.
    Javel E
    Hear Res; 1994 Dec; 81(1-2):167-88. PubMed ID: 7737923
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Auditory nerve frequency tuning measured with forward-masked compound action potentials.
    Verschooten E; Robles L; Kovačić D; Joris PX
    J Assoc Res Otolaryngol; 2012 Dec; 13(6):799-817. PubMed ID: 22948475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Otoacoustic Estimates of Cochlear Tuning: Testing Predictions in Macaque.
    Shera CA; Bergevin C; Kalluri R; Laughlin MM; Michelet P; van der Heijden M; Joris PX
    AIP Conf Proc; 2011; 1403():286-292. PubMed ID: 24701000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Musical experience sharpens human cochlear tuning.
    Bidelman GM; Nelms C; Bhagat SP
    Hear Res; 2016 May; 335():40-46. PubMed ID: 26900073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Frequency selectivity of single cochlear-nerve fibers based on the temporal response pattern to two-tone signals.
    Greenberg S; Geisler CD; Deng L
    J Acoust Soc Am; 1986 Apr; 79(4):1010-9. PubMed ID: 3700856
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Auditory brainstem responses predict auditory nerve fiber thresholds and frequency selectivity in hearing impaired chinchillas.
    Henry KS; Kale S; Scheidt RE; Heinz MG
    Hear Res; 2011 Oct; 280(1-2):236-44. PubMed ID: 21699970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Envelope following responses predict speech-in-noise performance in normal-hearing listeners.
    Mepani AM; Verhulst S; Hancock KE; Garrett M; Vasilkov V; Bennett K; de Gruttola V; Liberman MC; Maison SF
    J Neurophysiol; 2021 Apr; 125(4):1213-1222. PubMed ID: 33656936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Responses of single neurons in posterior field of cat auditory cortex to tonal stimulation.
    Phillips DP; Orman SS
    J Neurophysiol; 1984 Jan; 51(1):147-63. PubMed ID: 6693932
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporal modulation transfer functions measured from auditory-nerve responses following sensorineural hearing loss.
    Kale S; Heinz MG
    Hear Res; 2012 Apr; 286(1-2):64-75. PubMed ID: 22366500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The sharpening of cochlear frequency selectivity in the normal and abnormal cochlea.
    Evans EF
    Audiology; 1975; 14(5-6):419-42. PubMed ID: 1156249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new auditory threshold estimation technique for low frequencies: proof of concept.
    Lichtenhan JT; Cooper NP; Guinan JJ
    Ear Hear; 2013; 34(1):42-51. PubMed ID: 22874644
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency tuning of basilar membrane and auditory nerve fibers in the same cochleae.
    Narayan SS; Temchin AN; Recio A; Ruggero MA
    Science; 1998 Dec; 282(5395):1882-4. PubMed ID: 9836636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.